Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(7)  |  Call(7)  |  Derive(0)  |  Import(0)

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngPLS.py   AZOrange(Download)
    def __new__(cls, name = "PLS classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)
        #self.__init__(name, **kwds)
	return self
 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngRF.py   AZOrange(Download)
    def __new__(cls, name = "RF classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)        
        #self.__init__(name, **kwds)
        return self
##scPA

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvSVM.py   AZOrange(Download)
    def __new__(cls, name = "CvSVM classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)
        #self.__init__(name, **kwds)
        return self
 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvANN.py   AZOrange(Download)
    def __new__(cls, name = "CvANN classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)
        #self.__init__(name, **kwds)
        return self
 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvBoost.py   AZOrange(Download)
    def __new__(cls, name = "CvBoost classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)
        #self.__init__(name, **kwds)
        return self
 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvBayes.py   AZOrange(Download)
    def __new__(cls, name = "CvBayes classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)
        #self.__init__(name, **kwds)
        return self
 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngConsensus.py   AZOrange(Download)
    def __new__(cls, name = "Consensus classifier", **kwds):
        self = AZBaseClasses.AZClassifier.__new__(cls, name = name,  **kwds)      
        return self
 
    def getTopImportantVars(self, inEx, nVars = 1, gradRef = None, absGradient = True, c_step = None, getGrad = False):