Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(0)  |  Call(0)  |  Derive(0)  |  Import(0)

src/a/z/AZOrange-HEAD/azorange/AZutilities/competitiveWorkflow.py   AZOrange(Download)
            learners[ML] = MLMETHODS[ML](name = ML)
 
            runPath = miscUtilities.createScratchDir(baseDir = AZOC.NFS_SCRATCHDIR, desc = "competitiveWorkflow_BuildModel")
            trainData.save(os.path.join(runPath,"trainData.tab"))
 

src/a/z/AZOrange-HEAD/azorange/AZutilities/sgeUtilities.py   AZOrange(Download)
def arrayJob(jobName = "AZOarray",jobNumber =1 ,jobParams = [], jobParamFile = "Params.pkl", jobQueue = "quick.q", jobScript = "", memSize = "150M", environSource = os.path.join(os.environ["AZORANGEHOME"],"templateProfile.bash")):   
 
        runPath = miscUtilities.createScratchDir(desc ="optQsub"+jobName, baseDir = AZOC.NFS_SCRATCHDIR)
        cwd = os.getcwd()
        os.chdir(runPath)
        if wd == "temporary":
            qsub = qsub + "#$ -cwd"             + "\n"
            self.wd = miscUtilities.createScratchDir(desc ="optQsub"+name, baseDir = AZOC.NFS_SCRATCHDIR)
        else:
            qsub = qsub + "#$ -wd " + wd        + "\n"

src/a/z/AZOrange-HEAD/azorange/AutoConfig.py   AZOrange(Download)
    def ConfigNFSScratchDir(self):
        # Create the AZOrange scratch dir on the nfs system is if does not exist
        if not os.path.exists(AZOC.NFS_SCRATCHDIR):
            os.system("mkdir "+AZOC.NFS_SCRATCHDIR)
            if not os.path.exists(AZOC.NFS_SCRATCHDIR):
    def __call__(self):
        self.report = ""
        undefinedError = False
        if not self.ConfigNFSScratchDir():
            self.report += "Unable to create the NFS scratch dir: "+AZOC.NFS_SCRATCHDIR+"\n"

src/a/z/AZOrange-HEAD/azorange/AZutilities/getUnbiasedAccuracy.py   AZOrange(Download)
                                    optAcc[ml].append(R2)
                    else:
                            runPath = miscUtilities.createScratchDir(baseDir = AZOC.NFS_SCRATCHDIR, desc = "AccWOptParam", seed = id(trainData))
                            trainData.save(os.path.join(runPath,"trainData.tab"))
                            tunedPars = paramOptUtilities.getOptParam(

src/a/z/AZOrange-HEAD/orange/OrangeWidgets/Classify/OWCombiQSAR.py   AZOrange(Download)
            statPath = os.path.join(str(self.statPath),"statistics.pkl")
            modelPath = os.path.join(str(self.statPath),"Model")
        res = competitiveWorkflow.competitiveWorkflow(self.dataset, modelSavePath = modelPath, statisticsSavePath = statPath, runningDir = AZOC.NFS_SCRATCHDIR, queueType = self.queueTypes[self.queueType], callBack = self.advance)
        if not res:
            self.error("Errors occurred. Please check the output window.")
        else:
            statPath =  os.path.join(str(self.statPath),"statistics.pkl")
        runPath = miscUtilities.createScratchDir(desc = "CombiQSAR", baseDir = AZOC.NFS_SCRATCHDIR)
 
 

src/a/z/AZOrange-HEAD/azorange/AZutilities/paramOptUtilities.py   AZOrange(Download)
                    # WARNING! Do not specify a dir inside self.runPath. This would create a circular reference!
                    #          This path must ba a path accessible by all nodes running each point
                    GSPath = miscUtilities.createScratchDir(desc ="GRidSearchFiles", baseDir = AZOC.NFS_SCRATCHDIR)
                    GS_script = self.__CreateGridSearchFiles(paramKeys)
                    from AZutilities import AZGridSearch
    # Create a directory for running appspack (if not defined it will use the present working directory)
    if not runPath:
        runPath = miscUtilities.createScratchDir(desc ="optQsubTest", baseDir = AZOC.NFS_SCRATCHDIR)
 
    if responseType == "Classification":

src/a/z/AZOrange-HEAD/orange/OrangeWidgets/Classify/OWParamOpt.py   AZOrange(Download)
            scratchdir = miscUtilities.createScratchDir(desc = "OWParamOpt_Serial")
        else:
            scratchdir = miscUtilities.createScratchDir(desc ="OWParamOpt_MPI", baseDir = AZOC.NFS_SCRATCHDIR)
        # Save the dataset to the optimizer running path
        OrngFile = os.path.join(scratchdir,"OrngData.tab")