Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(11)  |  Call(11)  |  Derive(0)  |  Import(0)

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngRF.py   AZOrange(Download)
        cv.cvSetNumThreads(max(int(self.NumThreads),0))
        #Remove from the domain any unused values of discrete attributes including class
        trainingData = dataUtilities.getDataWithoutUnusedValues(trainingData,True)
 
        # Object holding the data req for predictions (model, domain, etc)

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvSVM.py   AZOrange(Download)
        dataUtilities.verbose = self.verbose
        #Remove from the domain any unused values of discrete attributes including class
        data = dataUtilities.getDataWithoutUnusedValues(data,True)
 
        #dataUtilities.rmAllMeta(data) 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvBayes.py   AZOrange(Download)
            raise Exception("AZorngCvBayes can only be used for classification.")
        #Remove from the domain any unused values of discrete attributes including class
        data = dataUtilities.getDataWithoutUnusedValues(data,True)
 
        #dataUtilities.rmAllMeta(data) 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvBoost.py   AZOrange(Download)
            return None
        #Remove from the domain any unused values of discrete attributes including class
        data = dataUtilities.getDataWithoutUnusedValues(data,True)
 
        #dataUtilities.rmAllMeta(data) 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngCvANN.py   AZOrange(Download)
        self.NTrainEx = len(data)
        #Remove from the domain any unused values of discrete attributes including class
        data = dataUtilities.getDataWithoutUnusedValues(data,True)
 
        #dataUtilities.rmAllMeta(data) 

src/a/z/AZOrange-HEAD/azorange/trainingMethods/AZorngPLS.py   AZOrange(Download)
            return None
        #Remove from the domain any unused values of discrete attributes including class
        trainingData = dataUtilities.getDataWithoutUnusedValues(trainingData,True)
        # Create path for the Orange data
        scratchdir = miscUtilities.createScratchDir(desc="PLS")

src/a/z/AZOrange-HEAD/orange/OrangeWidgets/Data/OWSelectData.py   AZOrange(Download)
            if self.purgeAttributes or self.purgeClasses:
                ##scPA  Using instead the method getDataWithoutUnusedValues of dataUtilities
                matchingOutput = dataUtilities.getDataWithoutUnusedValues(matchingOutput, self.purgeClasses)
                nonmatchingOutput = dataUtilities.getDataWithoutUnusedValues(nonMatchingOutput, self.purgeClasses)
                #remover = orange.RemoveUnusedValues(removeOneValued=True)

src/a/z/AZOrange-HEAD/tests/source/AZdataUtilitiesTest.py   AZOrange(Download)
        self.assert_(valuesActivity == "<POS, NEG, OTHER>")
        self.assert_(valuesSel == "<1, 2, 3, 4, 5, 6, 7, 8, 9>")
        newData = dataUtilities.getDataWithoutUnusedValues(self.unusedValuesData,True)
        #Check on new dataset that the unused values were removed from the domain
        self.assert_(str(newData.domain["Attr3"].values) == "<1, 2, 3, 4, 5>")

src/a/z/AZOrange-HEAD/tests/source/data/createTestDataSets.py   AZOrange(Download)
       idx = 0
 
data = dataUtilities.getDataWithoutUnusedValues(data,True)
 
random.seed(2)
NEx = len(data)
 
data = dataUtilities.getDataWithoutUnusedValues(data,True)
# With Meta
fileName = DataDesc+"_W_metas_FullNumeric_"