Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(2)  |  Call(2)  |  Derive(0)  |  Import(0)

src/a/z/AZOrange-HEAD/azorange/AZutilities/paramOptUtilities.py   AZOrange(Download)
        self.tunedParameters = "No parameters yet!"        
        #Get the number of Attributies in DataSet
        dataInfo = dataUtilities.getQuickDataSize(self.dataSet)
        #Check if the evaluation method is correct according to the dataset
        try:
    learnerName = str(learner.__class__)[:str(learner.__class__).rfind("'")].split(".")[-1]
    # Set the response type
    dataInfo = dataUtilities.getQuickDataSize(trainDataFile)
    # returned["discreteClass"]    - Flag indicating the type of class: 1:discrete, 0:continuous, -1: unknown
    if dataInfo["discreteClass"] == 1: