Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(12) | Call(12) | Derive(0) | Import(0)
src/b/i/biopython-1.63/Tests/test_MarkovModel.py biopython(Download)
] markov_model = MarkovModel.train_visible(states, alphabet, training_data) states = MarkovModel.find_states(markov_model, "AACGTT") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "TGCC") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "CCTGAGTTAGTCGT") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "CCGTACTTACCCAGGACCGCAGTCC") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "TTAGCAGTGCG") self.assertEqual(len(states), 1) state_list, state_float = states[0]
src/b/i/biopython-HEAD/Tests/test_MarkovModel.py biopython(Download)
] markov_model = MarkovModel.train_visible(states, alphabet, training_data) states = MarkovModel.find_states(markov_model, "AACGTT") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "TGCC") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "CCTGAGTTAGTCGT") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "CCGTACTTACCCAGGACCGCAGTCC") self.assertEqual(len(states), 1) state_list, state_float = states[0]
markov_model = MarkovModel.MarkovModel( states, alphabet, p_initial, p_transition, p_emission) states = MarkovModel.find_states(markov_model, "TTAGCAGTGCG") self.assertEqual(len(states), 1) state_list, state_float = states[0]