Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(15)  |  Call(11)  |  Derive(0)  |  Import(4)

src/b/i/biskit-2.4/doc/tutorial1/meganuclease.py   biskit(Download)
 
import Biskit.gnuplot as G
G.plot( t )
 
#-------------------------------------
_cons = prot['cons_ent'] / 1. / N.max( prot['cons_ent'] )
 
G.plot( _cont, _cons )
 
 

src/b/i/biskit-2.4/Biskit/Statistics/ROCalyzer_2.py   biskit(Download)
    def test_roccurve(self):
        """Statistics.ROCalyzer test"""
        from Biskit.gnuplot import plot
 
        self.a = ROCalyzer( self.hits )
        self.roc = self.a.roccurve( self.score )
 
        if self.local:
            plot( self.roc )
    def test_threshold(self):
        """Statistics.ROCThreshold test"""
        from Biskit.gnuplot import plot
 
        target = 1./ N.array( self.cl.valuesOf('rms') )
 
        if self.local:
            plot( self.t_curve )
 
        self.assert_( max(self.t_curve[:,1]) > 0.4 )

src/b/i/biskit-2.4/Biskit/Statistics/ROCalyzer.py   biskit(Download)
    def test_roccurve(self):
        """Statistics.ROCalyzer test"""
        from Biskit.gnuplot import plot
 
        self.a = ROCalyzer( self.hits )
        self.roc = self.a.roccurve( self.score )
 
        if self.local:
            plot( self.roc )
    def test_threshold(self):
        """Statistics.ROCThreshold test"""
        from Biskit.gnuplot import plot
 
        target = 1./ N.array( self.cl.valuesOf('rms') )
 
        if self.local:
            plot( self.t_curve )
 
        self.assert_( max(self.t_curve[:,1]) > 0.4 )

src/b/i/biskit-2.4/Biskit/wlc.py   biskit(Download)
wlc = WormLikeChain()
rc = [ (n, wlc.raa(n)) for n in range( 1, 40) ]
G.plot( rc )
 
pc = [ (r, wlc.praa(14,r)) for r in range( 1, 100) ]
G.plot( pc )

src/b/i/biskit-2.4/Biskit/Statistics/lognormal.py   biskit(Download)
 
        if self.local:
            gnuplot.plot( H.density( N.array(cr) - ca, 100 ) )
 
            globals().update( locals() )

src/b/i/biskit-2.4/Biskit/Dock/ComplexTraj.py   biskit(Download)
        r = N.ravel( r )
        r = N.compress( r, r )
        gnuplot.plot( hist.density( r, 10 ) )
 
 

src/b/i/biskit-2.4/Biskit/PDBModel.py   biskit(Download)
        xy = [ zip( m.xyz[:,0], m.xyz[:,1] ) for m in chains ]
 
        gnuplot.plot( *xy )