Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(8)  |  Call(5)  |  Derive(0)  |  Import(3)

src/h/e/Helmholtz-0.2.0/helmholtz/analysis/tools/examples/analysis_test.py   Helmholtz(Download)
from NeuroTools import parameters
from NeuroTools.stgen import StGen
from NeuroTools.signals import SpikeTrain, SpikeList
import shutil
import os
    # Return the results
    if recordedvariable == "spikes":
        result = SpikeList([], [])
        for cell in cells:
            result[cell.id] = cell.spike_train
        # Return the results
        if self.recordedvariable.potential == "spikes":
            result = SpikeList([], [])
            for cell in self.cells_cache.potential:
                result[cell.id] = cell.spike_train

src/h/e/Helmholtz-0.2.0/helmholtz/analysis/tools/examples/component_generator.py   Helmholtz(Download)
from NeuroTools import parameters
from NeuroTools.stgen import StGen
from NeuroTools.signals import SpikeTrain, SpikeList
import shutil
import os

src/n/e/NeuroTools-0.2.0/src/io.py   NeuroTools(Download)
        data      = self.get_data()
        data, p   = self._fix_id_list(data, p)
        return signals.SpikeList(data, p['id_list'], p['t_start'], p['t_stop'], p['dims'])
 
    def read_analogs(self, type, params):

src/h/e/Helmholtz-0.2.0/helmholtz/analysis/tools/library/complex_components/complex_component.py   Helmholtz(Download)
sys.path.append('/home/thierry/Benchmarks_Project/benchmarks')
from NeuroTools.analysis import TuningCurve
from NeuroTools.signals import SpikeList
from NeuroTools.facets import fkbtools
import numpy
        filtered_spikelists = []
        for spikelist in spikelists:
            filtered_spikelist = SpikeList([], [], spikelist.dt)
            for cell_id, spiketrain in spikelist.spiketrains.items():
                preferred_value = preferred_values[cell_id]

src/p/y/PyNN-HEAD/test/unsorted/simple_network.py   PyNN(Download)
    def get_spikes(self):
        spikes = {}
        for pop in chain(self._neuronal_populations, self._source_populations):
            spike_arr = pop.getSpikes()
            spikes[pop.label] = signals.SpikeList(spike_arr, id_list=range(pop.size))