Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(13) | Call(13) | Derive(0) | Import(0)
src/p/e/PEATDB-2.3/PEATDB/plugins/KineticsAnalysis.py PEATDB(Download)
ferrs = E.estimateExpUncertainty(d, runs=10) E.addMeta(d, 'exp_errors', ferrs) E.saveProject(os.path.join(self.path, name.replace(' ','')+'_temp')) tempslst = ['room','60','65','70','75']
E.insertDataset(ek, dup+'_'+'pHvsTm') E.fitDataset(dup+'_'+'pHvsTm', model='1 pKa 2 Chemical shifts', conv=1e-6, silent=True) E.saveProject() return
Ekcats.addMeta(name+'_'+str(r), 'exp_errors', ferrs) Ekcats.saveProject(os.path.join(self.path, 'kcats')) Ekms.saveProject(os.path.join(self.path, 'kms')) Ekcatskms.saveProject(os.path.join(self.path, 'kcats_kms'))
src/p/e/PEATDB-2.3/PEATDB/Ekin/Titration.py PEATDB(Download)
dc = cls.combineCurves(d1, d2) Ec.insertDataset(dc, d) Ec.saveProject(name[:5]+'_combined') for d in Ec.datasets: f, p = Ec.findBestModel(d, models=cls.models, strictchecking=True, alpha=0.05) Ec.saveProject(name[:5]+'_combined')
src/d/a/DataPipeline-1.2/DataPipeline/Base.py DataPipeline(Download)
results[namelabel] = data Em.saveProject(fname) Em.exportDatasets(fname, append=True) if self.model1 != '':
E,fits = self.processFits(rawdata=results, Em=Em) fname = os.path.join(self.workingdir, 'final') Em.saveProject(os.path.join(self.workingdir, fname)) Em.exportDatasets(os.path.join(self.workingdir, fname)) if self.model1 != '':
src/d/a/DataPipeline-1.2/DataPipeline/Testing.py DataPipeline(Download)
print 'final fits', fits fname = os.path.join(p.workingdir,'results') Em.saveProject(fname) p.saveEkinPlotstoImages(Em, fname) print 'completed fit propagation test'