Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(4)  |  Call(4)  |  Derive(0)  |  Import(0)
Adds some extra methods handy for working with PEATSA results matrices

PEATSAMatrices have a column called Mutations - which associates the data in each 
row with a particular mutant

src/p/e/PEATDB-2.3/PEATSA/Core/Classify.py   PEATDB(Download)
            rows = [matrix.dataForMutation(mutation) for mutation in rows]
 
            groups['systematic'] = [systematicFeatures, Core.Matrix.PEATSAMatrix(rows=rows, headers=matrix.columnHeaders())]
            systematicEntries = groups['systematic'][1].mutations
        else:
            rows = list(set(rows))
            rows = [matrix.dataForMutation(mutation) for mutation in rows]
            groups['outlier'] = [outlierFeatures, Core.Matrix.PEATSAMatrix(rows=rows, headers=matrix.columnHeaders())]
            outlierEntries = groups['outlier'][1].mutations
        else:
                rows.append(matrix.row(i))
 
        groups['good'] = [allFeatures, Core.Matrix.PEATSAMatrix(rows=rows, headers=matrix.columnHeaders())]
 
        return groups
        result = None
        if len(rows) is not 0:
            result = Core.Matrix.PEATSAMatrix(rows, headers=matrixTwo.columnHeaders())
 
        return result