Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(4) | Call(4) | Derive(0) | Import(0)
Adds some extra methods handy for working with PEATSA results matrices PEATSAMatrices have a column called Mutations - which associates the data in each row with a particular mutant
src/p/e/PEATDB-2.3/PEATSA/Core/Classify.py PEATDB(Download)
rows = [matrix.dataForMutation(mutation) for mutation in rows] groups['systematic'] = [systematicFeatures, Core.Matrix.PEATSAMatrix(rows=rows, headers=matrix.columnHeaders())] systematicEntries = groups['systematic'][1].mutations else:
rows = list(set(rows)) rows = [matrix.dataForMutation(mutation) for mutation in rows] groups['outlier'] = [outlierFeatures, Core.Matrix.PEATSAMatrix(rows=rows, headers=matrix.columnHeaders())] outlierEntries = groups['outlier'][1].mutations else:
rows.append(matrix.row(i)) groups['good'] = [allFeatures, Core.Matrix.PEATSAMatrix(rows=rows, headers=matrix.columnHeaders())] return groups
result = None if len(rows) is not 0: result = Core.Matrix.PEATSAMatrix(rows, headers=matrixTwo.columnHeaders()) return result