Did I find the right examples for you? yes no

All Samples(11)  |  Call(0)  |  Derive(0)  |  Import(11)

src/a/s/asciiporn-2009.05.01/asciiporn/weave/examples/vq.py   asciiporn(Download)
 
import time
import RandomArray
def compare(m,Nobs,Ncodes,Nfeatures):
    obs = RandomArray.normal(0.,1.,(Nobs,Nfeatures))

src/s/c/scipy-0.13.3/scipy/weave/examples/vq.py   scipy(Download)
 
import time
import RandomArray
 
 

src/s/c/scipy-HEAD/scipy/weave/examples/vq.py   scipy(Download)
 
import time
import RandomArray
def compare(m,Nobs,Ncodes,Nfeatures):
    obs = RandomArray.normal(0.,1.,(Nobs,Nfeatures))

src/c/s/csc-pysparse-1.1.1.4/examples/sortedLL_test.py   csc-pysparse(Download)
from pysparse.spmatrix import *
import RandomArray
import time
 
n = 1000

src/c/s/csc-pysparse-1.1.1.4/examples/jdsym_test.py   csc-pysparse(Download)
from pysparse import spmatrix, jdsym, itsolvers
from numpy import zeros, dot, allclose, multiply
from math import sqrt
import RandomArray
 

src/g/m/gmisclib-0.73.0/md_scaling.py   gmisclib(Download)
import Numeric
import math
import RandomArray
 
 

src/g/m/gmisclib-0.73.0/mcmcSQ.py   gmisclib(Download)
import random
import Num
import RandomArray
import LinearAlgebra
import g_localfit

src/g/m/gmisclib-0.73.0/lapack_dsyevd.py   gmisclib(Download)
	i = Numeric.array([[2, 0], [0, 1]], Numeric.Float)
	print dsyevd(i)
	import RandomArray
	i = RandomArray.random((4,4)) + 1*Numeric.identity(4)
	i = i + Numeric.transpose(i)

src/g/m/gmisclib-0.73.0/g_localfit.py   gmisclib(Download)
def leaktest():
	import RandomArray
	while 1:
		d = []
		for i in range(100):

src/d/e/Delny-0.4.1/test/test__qhull.py   Delny(Download)
 
import Numeric
import RandomArray
 
import delaunay._qhull

  1 | 2  Next