Did I find the right examples for you? yes no

# RandomArray

All Samples(11)  |  Call(0)  |  Derive(0)  |  Import(11)

src/a/s/asciiporn-2009.05.01/asciiporn/weave/examples/vq.py   asciiporn(Download)
```
import time
import RandomArray
def compare(m,Nobs,Ncodes,Nfeatures):
obs = RandomArray.normal(0.,1.,(Nobs,Nfeatures))
```

src/s/c/scipy-0.13.3/scipy/weave/examples/vq.py   scipy(Download)
```
import time
import RandomArray

```

src/s/c/scipy-HEAD/scipy/weave/examples/vq.py   scipy(Download)
```
import time
import RandomArray
def compare(m,Nobs,Ncodes,Nfeatures):
obs = RandomArray.normal(0.,1.,(Nobs,Nfeatures))
```

src/c/s/csc-pysparse-1.1.1.4/examples/sortedLL_test.py   csc-pysparse(Download)
```from pysparse.spmatrix import *
import RandomArray
import time

n = 1000
```

src/c/s/csc-pysparse-1.1.1.4/examples/jdsym_test.py   csc-pysparse(Download)
```from pysparse import spmatrix, jdsym, itsolvers
from numpy import zeros, dot, allclose, multiply
from math import sqrt
import RandomArray

```

src/g/m/gmisclib-0.73.0/md_scaling.py   gmisclib(Download)
```import Numeric
import math
import RandomArray

```

src/g/m/gmisclib-0.73.0/mcmcSQ.py   gmisclib(Download)
```import random
import Num
import RandomArray
import LinearAlgebra
import g_localfit
```

src/g/m/gmisclib-0.73.0/lapack_dsyevd.py   gmisclib(Download)
```	i = Numeric.array([[2, 0], [0, 1]], Numeric.Float)
print dsyevd(i)
import RandomArray
i = RandomArray.random((4,4)) + 1*Numeric.identity(4)
i = i + Numeric.transpose(i)
```

src/g/m/gmisclib-0.73.0/g_localfit.py   gmisclib(Download)
```def leaktest():
import RandomArray
while 1:
d = []
for i in range(100):
```

src/d/e/Delny-0.4.1/test/test__qhull.py   Delny(Download)
```
import Numeric
import RandomArray

import delaunay._qhull
```

1 | 2  Next