Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(7)  |  Call(5)  |  Derive(0)  |  Import(2)
Stores and manages all boundary edges requiring
Robin boundary conditions. If a case degenerates to Neumann or Dirichlet
boundary conditions then those classes should be used.

Data Structure(a dictionary): { (i1,i2): (A,B) }

A and B are defined as follows:

n*F*grad(v) = A - B v

src/e/l/ellipt2d-3.0.1/Demos/simple3.py   ellipt2d(Download)
from ellipt2d import ellipt2d
from DirichletBound import DirichletBound
from RobinBound import RobinBound
import reg2tri
for i in range(nx1):
    db[i] = 0.
rb = RobinBound()
for i in range((ny1-1)*nx1, ny1*nx1-1):
    x = grid.x(i)

src/e/l/ellipt2d-3.0.1/Demos/demo_RegRb.py   ellipt2d(Download)
import time
from math import sqrt
from RobinBound import RobinBound
class demo_RegRb:
            (x0, y0, xmax, ymax), self.nx1, self.ny1)
        rB = RobinBound()
        for i in range(0,self.nx1-1):

src/e/l/ellipt2d-3.0.1/Demos/bubbles.py   ellipt2d(Download)
    def assemble(self):
        import cellipt2d, RobinBound
        rB = RobinBound.RobinBound()

src/e/l/ellipt2d-3.0.1/tkplot.py   ellipt2d(Download)
    nb[(nx1*ny1-2,nx1*ny1-1)] = 3.0
    rb = RobinBound.RobinBound()
    rb[(nx1*ny1-3,nx1*ny1-2)] = [2.0,1.34]

src/e/l/ellipt2d-3.0.1/ctkplot.py   ellipt2d(Download)
    nb[(nx1*ny1-2,nx1*ny1-1)] = 3.0+0j
    rb = RobinBound.RobinBound()
    rb[(nx1*ny1-3,nx1*ny1-2)] = [2.0,1.34]