Did I find the right examples for you? yes no

All Samples(35)  |  Call(27)  |  Derive(0)  |  Import(8)

src/s/a/sage-HEAD/src/sage/modular/arithgroup/congroup_gammaH.py   sage(Download)
        ArithmeticError: The generators [10] must be units modulo 14
    """
    from all import Gamma0, Gamma1, SL2Z
    if level == 1:
        return SL2Z
            ]
        """
        from all import SL2Z
        N = self.level()
        return [SL2Z(lift_to_sl2z(0, d.lift(), N)) for d in _GammaH_coset_helper(N, self._list_of_elements_in_H())]
            True
        """
        from all import Gamma0, SL2Z
        reps1 = Gamma0(self.level()).coset_reps()
        for r in reps1:

src/s/a/sage-HEAD/src/sage/modular/arithgroup/arithgroup_perm.py   sage(Download)
################################################################################
 
from all import SL2Z
from arithgroup_generic import ArithmeticSubgroup
from sage.rings.all import Zmod
from sage.groups.perm_gps.permgroup_element import PermutationGroupElement
 
Idm = SL2Z([1,0,0,1])    # identity
 
Lm = SL2Z([1,1,0,1])     # parabolic that fixes infinity
Rm = SL2Z([1,0,1,1])     # parabolic that fixes 0
S2m = SL2Z([0,-1,1,0])   # elliptic of order 2 (fix i)

src/s/a/sage-HEAD/src/sage/modular/arithgroup/congroup_gamma0.py   sage(Download)
        True
    """
    from all import SL2Z
    if N == 1: return SL2Z
    try:
            ]
        """
        from all import SL2Z
        N = self.level()
        if N == 1: # P1List isn't very happy working modulo 1
            yield SL2Z([1,0,0,1])
        else:
            for z in sage.modular.modsym.p1list.P1List(N):
                yield SL2Z(lift_to_sl2z(z[0], z[1], N))

src/s/a/sage-HEAD/src/sage/modular/arithgroup/tests.py   sage(Download)
        """
        from sage.all import prod
        from all import SL2Z
        from arithgroup_perm import S2m,S3m,Lm
 
        G = random_even_arithgroup(self.index)
 
        m = {'l':Lm, 's':S2m}
        tree,reps,wreps,gens = G._spanning_tree_verrill()
        assert reps[0] == SL2Z([1,0,0,1])
            assert prod(m[letter] for letter in wreps[i]) == reps[i]
        tree,reps,wreps,gens = G._spanning_tree_verrill(on_right=False)
        assert reps[0] == SL2Z([1,0,0,1])
        assert wreps[0] == ''
        for i in xrange(1,self.index):
            assert prod(m[letter] for letter in wreps[i]) == reps[i]
 
        m = {'s2':S2m, 's3':S3m}
        tree,reps,wreps,gens = G._spanning_tree_kulkarni()
        assert reps[0] == SL2Z([1,0,0,1])
            assert prod(m[letter] for letter in wreps[i]) == reps[i]
        tree,reps,wreps,gens = G._spanning_tree_kulkarni(on_right=False)
        assert reps[0] == SL2Z([1,0,0,1])
        assert wreps[0] == []
        for i in xrange(1,self.index):