Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(1) | Call(1) | Derive(0) | Import(0)
def load(file, good_words=None): ng = {} for line in file: wordstr, countstr = line.split('\t') words = tuple(wordstr.split()) if good_words and not all(word in good_words for word in words): continue ng.setdefault(words[:-1], {})[words[-1]] = int(countstr) global ngrams ngrams = dict((state, (sum(d.itervalues()), d)) for state, d in ng.iteritems())
ngram_filename = argv[1] argv = argv[2:] babble.load(open(ngram_filename), (pronounceables - bad_words) | set(['<S>'])) if not argv: