Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(1)  |  Call(1)  |  Derive(0)  |  Import(0)

        def load(file, good_words=None):
    ng = {}
    for line in file:
        wordstr, countstr = line.split('\t')
        words = tuple(wordstr.split())
        if good_words and not all(word in good_words for word in words):
            continue
        ng.setdefault(words[:-1], {})[words[-1]] = int(countstr)
    global ngrams
    ngrams = dict((state, (sum(d.itervalues()), d))
                  for state, d in ng.iteritems())
        


src/l/a/languagetoys-HEAD/verse.py   languagetoys(Download)
        ngram_filename = argv[1]
        argv = argv[2:]
    babble.load(open(ngram_filename),
                (pronounceables - bad_words) | set(['<S>']))
    if not argv: