Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(155) | Call(155) | Derive(0) | Import(0)
src/x/b/xbob.paper.example-0.2.0/xbob/paper/example/utils.py xbob.paper.example(Download)
def save_machine(X_mean, machine, filename): """Saves the machine and the mean vector into an hdf5 file""" f = bob.io.HDF5File(filename, 'w') f.set('X_mean', X_mean) machine.save(f)
src/m/a/maskattack.study-1.0.0/maskattack/study/accumulate/rgbd_to_rgbxyz.py maskattack.study(Download)
print "Saving the hdf5 file.." file_hdf5 = bob.io.HDF5File(file_path, 'w') file_hdf5.set('Shape_Data', XYZ, compression=9) file_hdf5.set('Color_Data', RGB, compression=9) del file_hdf5
src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_jfa.py xbob.thesis.elshafey2014(Download)
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('acc_v_a1', jfa_trainer.acc_v_a1) f.set('acc_v_a2', jfa_trainer.acc_v_a2) #n_y = len(jfa_trainer.__Y__) #f.set('n_y', n_y) #for iy in range(n_y): # f.set('y_%05d' % iy, jfa_trainer.__Y__[iy]) f.set('nsamples', nsamples)
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('acc_u_a1', jfa_trainer.acc_u_a1) f.set('acc_u_a2', jfa_trainer.acc_u_a2) n_y = len(jfa_trainer.__Y__)
src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_ivector.py xbob.thesis.elshafey2014(Download)
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('acc_nij_wij2', ivector_trainer.acc_nij_wij2) f.set('acc_fnormij_wij', ivector_trainer.acc_fnormij_wij) f.set('acc_nij', ivector_trainer.acc_nij) f.set('acc_snormij', ivector_trainer.acc_snormij) f.set('nsamples', nsamples)
src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/tools/ParaUBMGMM.py xbob.thesis.elshafey2014(Download)
utils.ensure_dir(os.path.dirname(normalized_list[index])) f = bob.io.HDF5File(str(normalized_list[index]), 'w') f.set('mean', mean) f.set('std', std) utils.debug("Saved normalized feature %s" %str(normalized_list[index]))
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('zeros', kmeans_trainer.zeroeth_order_statistics) f.set('first', kmeans_trainer.first_order_statistics) f.set('dist', dist * nsamples)
src/f/a/facereclib-1.2.1/facereclib/script/para_ubm_faceverify_ivector.py facereclib(Download)
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('acc_nij_wij2', ivector_trainer.acc_nij_wij2) f.set('acc_fnormij_wij', ivector_trainer.acc_fnormij_wij) f.set('acc_nij', ivector_trainer.acc_nij) f.set('acc_snormij', ivector_trainer.acc_snormij) f.set('nsamples', nsamples)
src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_isv.py xbob.thesis.elshafey2014(Download)
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('acc_u_a1', isv_trainer.acc_u_a1) f.set('acc_u_a2', isv_trainer.acc_u_a2) f.set('nsamples', nsamples)
src/f/a/facereclib-HEAD/facereclib/script/para_ubm_faceverify_ivector.py facereclib(Download)
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('acc_nij_wij2', ivector_trainer.acc_nij_wij2) f.set('acc_fnormij_wij', ivector_trainer.acc_fnormij_wij) f.set('acc_nij', ivector_trainer.acc_nij) f.set('acc_snormij', ivector_trainer.acc_snormij) f.set('nsamples', nsamples)
src/f/a/facereclib-1.2.1/facereclib/tools/ParallelUBMGMM.py facereclib(Download)
utils.ensure_dir(os.path.dirname(normalized_list[index])) f = bob.io.HDF5File(str(normalized_list[index]), 'w') f.set('mean', mean) f.set('std', std) utils.debug("Saved normalized feature %s" %str(normalized_list[index]))
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('zeros', kmeans_trainer.zeroeth_order_statistics) f.set('first', kmeans_trainer.first_order_statistics) f.set('dist', dist * nsamples)
src/f/a/facereclib-HEAD/facereclib/tools/ParallelUBMGMM.py facereclib(Download)
utils.ensure_dir(os.path.dirname(normalized_list[index])) f = bob.io.HDF5File(str(normalized_list[index]), 'w') f.set('mean', mean) f.set('std', std) utils.debug("Saved normalized feature %s" %str(normalized_list[index]))
utils.ensure_dir(os.path.dirname(stats_file)) f = bob.io.HDF5File(stats_file, 'w') f.set('zeros', kmeans_trainer.zeroeth_order_statistics) f.set('first', kmeans_trainer.first_order_statistics) f.set('dist', dist * nsamples)
1 | 2 | 3 | 4 | 5 Next