Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(155)  |  Call(155)  |  Derive(0)  |  Import(0)

src/x/b/xbob.paper.example-0.2.0/xbob/paper/example/utils.py   xbob.paper.example(Download)
def save_machine(X_mean, machine, filename):
  """Saves the machine and the mean vector into an hdf5 file"""
  f = bob.io.HDF5File(filename, 'w')
  f.set('X_mean', X_mean)
  machine.save(f)

src/m/a/maskattack.study-1.0.0/maskattack/study/accumulate/rgbd_to_rgbxyz.py   maskattack.study(Download)
      print "Saving the hdf5 file.."
      file_hdf5 = bob.io.HDF5File(file_path, 'w')
      file_hdf5.set('Shape_Data', XYZ, compression=9)
      file_hdf5.set('Color_Data', RGB, compression=9)
      del file_hdf5

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_jfa.py   xbob.thesis.elshafey2014(Download)
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('acc_v_a1', jfa_trainer.acc_v_a1)
      f.set('acc_v_a2', jfa_trainer.acc_v_a2)
      #n_y = len(jfa_trainer.__Y__)
      #f.set('n_y', n_y)
      #for iy in range(n_y):
      #  f.set('y_%05d' % iy, jfa_trainer.__Y__[iy])
      f.set('nsamples', nsamples)
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('acc_u_a1', jfa_trainer.acc_u_a1)
      f.set('acc_u_a2', jfa_trainer.acc_u_a2)
      n_y = len(jfa_trainer.__Y__)

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_ivector.py   xbob.thesis.elshafey2014(Download)
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('acc_nij_wij2', ivector_trainer.acc_nij_wij2)
      f.set('acc_fnormij_wij', ivector_trainer.acc_fnormij_wij)
      f.set('acc_nij', ivector_trainer.acc_nij)
      f.set('acc_snormij', ivector_trainer.acc_snormij)
      f.set('nsamples', nsamples)

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/tools/ParaUBMGMM.py   xbob.thesis.elshafey2014(Download)
        utils.ensure_dir(os.path.dirname(normalized_list[index]))
        f = bob.io.HDF5File(str(normalized_list[index]), 'w')
        f.set('mean', mean)
        f.set('std', std)
        utils.debug("Saved normalized feature %s" %str(normalized_list[index]))
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('zeros', kmeans_trainer.zeroeth_order_statistics)
      f.set('first', kmeans_trainer.first_order_statistics)
      f.set('dist', dist * nsamples)

src/f/a/facereclib-1.2.1/facereclib/script/para_ubm_faceverify_ivector.py   facereclib(Download)
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('acc_nij_wij2', ivector_trainer.acc_nij_wij2)
      f.set('acc_fnormij_wij', ivector_trainer.acc_fnormij_wij)
      f.set('acc_nij', ivector_trainer.acc_nij)
      f.set('acc_snormij', ivector_trainer.acc_snormij)
      f.set('nsamples', nsamples)

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_isv.py   xbob.thesis.elshafey2014(Download)
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('acc_u_a1', isv_trainer.acc_u_a1)
      f.set('acc_u_a2', isv_trainer.acc_u_a2)
      f.set('nsamples', nsamples)

src/f/a/facereclib-HEAD/facereclib/script/para_ubm_faceverify_ivector.py   facereclib(Download)
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('acc_nij_wij2', ivector_trainer.acc_nij_wij2)
      f.set('acc_fnormij_wij', ivector_trainer.acc_fnormij_wij)
      f.set('acc_nij', ivector_trainer.acc_nij)
      f.set('acc_snormij', ivector_trainer.acc_snormij)
      f.set('nsamples', nsamples)

src/f/a/facereclib-1.2.1/facereclib/tools/ParallelUBMGMM.py   facereclib(Download)
        utils.ensure_dir(os.path.dirname(normalized_list[index]))
        f = bob.io.HDF5File(str(normalized_list[index]), 'w')
        f.set('mean', mean)
        f.set('std', std)
        utils.debug("Saved normalized feature %s" %str(normalized_list[index]))
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('zeros', kmeans_trainer.zeroeth_order_statistics)
      f.set('first', kmeans_trainer.first_order_statistics)
      f.set('dist', dist * nsamples)

src/f/a/facereclib-HEAD/facereclib/tools/ParallelUBMGMM.py   facereclib(Download)
        utils.ensure_dir(os.path.dirname(normalized_list[index]))
        f = bob.io.HDF5File(str(normalized_list[index]), 'w')
        f.set('mean', mean)
        f.set('std', std)
        utils.debug("Saved normalized feature %s" %str(normalized_list[index]))
      utils.ensure_dir(os.path.dirname(stats_file))
      f = bob.io.HDF5File(stats_file, 'w')
      f.set('zeros', kmeans_trainer.zeroeth_order_statistics)
      f.set('first', kmeans_trainer.first_order_statistics)
      f.set('dist', dist * nsamples)

  1 | 2 | 3 | 4 | 5  Next