Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(0)  |  Call(0)  |  Derive(0)  |  Import(0)

src/a/n/antispoofing.lbp-1.3.0/antispoofing/lbp/spoof/calclbp.py   antispoofing.lbp(Download)
  """
 
  elbps = {'regular':bob.ip.ELBPType.REGULAR, 'transitional':bob.ip.ELBPType.TRANSITIONAL, 'direction_coded':bob.ip.ELBPType.DIRECTION_CODED, 'modified':bob.ip.ELBPType.REGULAR}
 
  if elbptype=='modified':

src/a/n/antispoofing.lbptop-1.0.4/antispoofing/lbptop/spoof/calclbptop.py   antispoofing.lbptop(Download)
def lbptophist(grayFaceNormFrameSequence,nXY,nXT,nYT,rX,rY,rT,cXY,cXT,cYT,lbptypeXY,lbptypeXT,lbptypeYT,elbptypeXY,elbptypeXT,elbptypeYT,histrogramOutput=True):
 
  elbps = {'regular':bob.ip.ELBPType.REGULAR, 'transitional':bob.ip.ELBPType.TRANSITIONAL, 'direction_coded':bob.ip.ELBPType.DIRECTION_CODED, 'modified':bob.ip.ELBPType.REGULAR}
 
  uniformXY = False

src/m/a/maskattack.lbp-1.0.3/maskattack/lbp/spoof/calclbp.py   maskattack.lbp(Download)
  """
 
  elbps = {'regular':bob.ip.ELBPType.REGULAR, 'transitional':bob.ip.ELBPType.TRANSITIONAL, 'direction_coded':bob.ip.ELBPType.DIRECTION_CODED, 'modified':bob.ip.ELBPType.REGULAR}
 
  if elbptype=='modified':

src/m/a/maskattack.study-1.0.0/maskattack/study/antispoof/lbp.py   maskattack.study(Download)
def lbphist(img,lbptype,blocks):
  norm = False
  elbptype = {'regular':bob.ip.ELBPType.REGULAR, 'transitional':bob.ip.ELBPType.TRANSITIONAL, 'direction_coded':bob.ip.ELBPType.DIRECTION_CODED}
  finalhist = numpy.array([])
  if lbptype != 'maatta11':

src/e/s/estimate.gender-0.4/estimate/gender/estimateGender.py   estimate.gender(Download)
def lbphist(img,lbptype='reg',numblock = 1, lbpscale=None, norm=False):
  num_points = int(str(lbpscale[0]).replace("'","").replace(",","").replace("(","").replace(")","").replace(" ",""))
  radius = int(lbpscale[1][0])
  elbptype = {'reg':bob.ip.ELBPType.REGULAR, 'tra':bob.ip.ELBPType.TRANSITIONAL, 'dir':bob.ip.ELBPType.DIRECTION_CODED}
  finalhist = numpy.array([])

src/f/a/facereclib-1.2.1/facereclib/preprocessing/INormLBP.py   facereclib(Download)
 
    # lbp extraction
    self.m_lgb_extractor = bob.ip.LBP(8, radius, is_circular, compare_to_average, add_average_bit, is_uniform, is_rotation_invariant, bob.ip.ELBPType.REGULAR)
    if self.m_perform_image_cropping:
      self.m_i_norm_image = numpy.ndarray([size - 2*radius for size in self.m_cropped_image.shape], numpy.uint16)

src/f/a/facereclib-HEAD/facereclib/preprocessing/INormLBP.py   facereclib(Download)
 
    # lbp extraction
    self.m_lgb_extractor = bob.ip.LBP(8, radius, is_circular, compare_to_average, add_average_bit, is_uniform, is_rotation_invariant, bob.ip.ELBPType.REGULAR)
    if self.m_perform_image_cropping:
      self.m_i_norm_image = numpy.ndarray([size - 2*radius for size in self.m_cropped_image.shape], numpy.uint16)