Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(17) | Call(16) | Derive(0) | Import(1)
src/x/b/xbob.example.faceverify-1.0.0/xbob/example/faceverify/gabor_graph.py xbob.example.faceverify(Download)
# To preprocess the AT&T images, we use the TanTriggs algorithm preprocessor = bob.ip.TanTriggs() def load_images(db, group = None, purpose = None, database_directory = None, image_extension = '.pgm'):
images[k.id] = bob.io.load(k.make_path(database_directory, image_extension)).astype(numpy.float64) # preprocess the images images[k.id] = preprocessor(images[k.id]) return images
src/a/n/antispoofing.verification.gmm-1.0.2/antispoofing/verification/features/dct.py antispoofing.verification.gmm(Download)
# Initializes the Tan and Triggs preprocessing TT = bob.ip.TanTriggs( GAMMA, SIGMA0, SIGMA1, SIZE, THRESHOLD, ALPHA) preprocessed_img = numpy.ndarray((CROP_H, CROP_W), 'float64')
FEN(img, cropped_img, LH, LW, RH, RW) # Preprocesses a face using Tan and Triggs TT(cropped_img, preprocessed_img) # Computes DCT features dct_blocks=dctfeatures(preprocessed_img, BLOCK_H, BLOCK_W,
# Initializes the Tan and Triggs preprocessing TT = bob.ip.TanTriggs( GAMMA, SIGMA0, SIGMA1, SIZE, THRESHOLD, ALPHA) preprocessed_img = numpy.ndarray((CROP_H, CROP_W), 'float64')
FEN(img, cropped_img, int(LH), int(LW), int(RH), int(RW)) # Preprocesses a face using Tan and Triggs TT(cropped_img, preprocessed_img) # Computes DCT features dct_blocks=dctfeatures(preprocessed_img,
src/x/b/xbob.paper.tpami2013-1.0.0/xbob/paper/tpami2013/features.py xbob.paper.tpami2013(Download)
# Initializes the Tan and Triggs preprocessing tt = bob.ip.TanTriggs( gamma, sigma0, sigma1, size, threshold, alpha) preprocessed_img = numpy.ndarray(shape=(crop_h, crop_w), dtype=numpy.float64)
# Preprocesses a face using Tan and Triggs tt(cropped_img, preprocessed_img) preprocessed_img_s = bob.core.convert(preprocessed_img, dtype=numpy.uint8, source_range=(-threshold,threshold))
src/a/n/antispoofing.eyeblink-1.0.4/antispoofing/eyeblink/utils.py antispoofing.eyeblink(Download)
ALPHA = 0.1 from bob.ip import TanTriggs from bob.core import convert op = TanTriggs(GAMMA, SIGMA0, SIGMA1, SIZE, THRESHOLD, ALPHA)
if annotations.has_key(key): x, y, width, height = annotations[key]['face_remainder'] res = op(frames[counter][y:(y+height), x:(x+width)]) frames[counter][y:(y+height), x:(x+width)] = \ convert(res, 'uint8', (0, 255), (-THRESHOLD, THRESHOLD))
src/f/a/facereclib-1.2.1/facereclib/preprocessing/TanTriggs.py facereclib(Download)
self.m_tan_triggs_image = None self.m_tan_triggs = bob.ip.TanTriggs(gamma, sigma0, sigma1, size, threshold, alpha)
self.m_color_channel = color_channel # prepare image normalization self.m_tan = bob.ip.TanTriggs(gamma, sigma0, sigma1, size, threshold, alpha) def read_original_data(self, video_file):
src/f/a/facereclib-HEAD/facereclib/preprocessing/TanTriggs.py facereclib(Download)
self.m_tan_triggs_image = None self.m_tan_triggs = bob.ip.TanTriggs(gamma, sigma0, sigma1, size, threshold, alpha)
self.m_color_channel = color_channel # prepare image normalization self.m_tan = bob.ip.TanTriggs(gamma, sigma0, sigma1, size, threshold, alpha) def read_original_data(self, video_file):
src/a/n/antispoofing.lbptop-1.0.4/antispoofing/lbptop/script/lbptop_calculate_parameters.py antispoofing.lbptop(Download)
#Instancianting the Tan & Triggs algorithm (The default configurations only) tantriggs = bob.ip.TanTriggs()
grayFrames[i] = bob.ip.rgb_to_gray(vin[i,:,:,:]) if(tan_triggs): grayFrames[i] = tantriggs(grayFrames[i]) ### STARTING the video analysis