Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(4)  |  Call(3)  |  Derive(0)  |  Import(1)

src/f/a/facereclib-1.2.1/facereclib/preprocessing/HistogramEqualization.py   facereclib(Download)
      self.m_histogram_image = numpy.ndarray(image.shape, numpy.float64)
 
    bob.ip.histogram_equalization(numpy.round(image).astype(numpy.uint8), self.m_histogram_image)
 
    return self.m_histogram_image

src/f/a/facereclib-HEAD/facereclib/preprocessing/HistogramEqualization.py   facereclib(Download)
      self.m_histogram_image = numpy.ndarray(image.shape, numpy.float64)
 
    bob.ip.histogram_equalization(numpy.round(image).astype(numpy.uint8), self.m_histogram_image)
 
    return self.m_histogram_image

src/a/n/antispoofing.eyeblink-1.0.4/antispoofing/eyeblink/utils.py   antispoofing.eyeblink(Download)
def light_normalize_histogram(frames, annotations, start, end):
  """Runs the light normalization on detected faces"""
 
  from bob.ip import histogram_equalization
  from bob.core import convert
    if annotations.has_key(key):
      x, y, width, height = annotations[key]['face_remainder']
      res = histogram_equalization(frames[counter][y:(y+height), x:(x+width)])
      frames[counter][y:(y+height), x:(x+width)] = res