Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(16) | Call(16) | Derive(0) | Import(0)
src/f/a/facereclib-1.2.1/facereclib/tools/ISV.py facereclib(Download)
self._load_projector_isv(projector_file) self.m_machine = bob.machine.ISVMachine(self.m_isvbase) self.m_trainer = bob.trainer.ISVTrainer(self.m_isv_training_iterations, self.m_relevance_factor) self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
def _project_isv(self, projected_ubm): projected_isv = numpy.ndarray(shape=(self.m_ubm.dim_c*self.m_ubm.dim_d,), dtype=numpy.float64) model = bob.machine.ISVMachine(self.m_isvbase) model.estimate_ux(projected_ubm, projected_isv) return projected_isv
def read_model(self, model_file): """Reads the ISV Machine that holds the model""" machine = bob.machine.ISVMachine(bob.io.HDF5File(model_file)) machine.isv_base = self.m_isvbase return machine
src/f/a/facereclib-HEAD/facereclib/tools/ISV.py facereclib(Download)
self._load_projector_isv(projector_file) self.m_machine = bob.machine.ISVMachine(self.m_isvbase) self.m_trainer = bob.trainer.ISVTrainer(self.m_isv_training_iterations, self.m_relevance_factor) self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
def _project_isv(self, projected_ubm): projected_isv = numpy.ndarray(shape=(self.m_ubm.dim_c*self.m_ubm.dim_d,), dtype=numpy.float64) model = bob.machine.ISVMachine(self.m_isvbase) model.estimate_ux(projected_ubm, projected_isv) return projected_isv
def read_model(self, model_file): """Reads the ISV Machine that holds the model""" machine = bob.machine.ISVMachine(bob.io.HDF5File(model_file)) machine.isv_base = self.m_isvbase return machine
src/x/b/xbob.spkrec-1.0.3/xbob/spkrec/tools/ISV.py xbob.spkrec(Download)
self.m_isvbase.ubm = self.m_ubm self.m_machine = bob.machine.ISVMachine(self.m_isvbase) self.m_trainer = bob.trainer.ISVTrainer(self.m_config.n_iter_train, self.m_config.relevance_factor)
def project_isv(self, feature_array, projected_ubm): #""Computes GMM statistics against a UBM, given an input 2D numpy.ndarray of feature vectors"" projected_isv = numpy.ndarray(shape=(self.m_ubm.dim_c*self.m_ubm.dim_d,), dtype=numpy.float64) model = bob.machine.ISVMachine(self.m_isvbase)
def read_model(self, model_file): """Reads the ISV Machine that holds the model""" print("model: %s" %model_file) machine = bob.machine.ISVMachine(bob.io.HDF5File(model_file)) machine.isv_base = self.m_isvbase
src/b/o/bob.spear-1.1.2/spear/tools/ISV.py bob.spear(Download)
self.m_isvbase.ubm = self.m_ubm self.m_machine = bob.machine.ISVMachine(self.m_isvbase) self.m_trainer = bob.trainer.ISVTrainer(self.m_config.n_iter_train, self.m_config.relevance_factor)
def project_isv(self, feature_array, projected_ubm): #""Computes GMM statistics against a UBM, given an input 2D numpy.ndarray of feature vectors"" projected_isv = numpy.ndarray(shape=(self.m_ubm.dim_c*self.m_ubm.dim_d,), dtype=numpy.float64) model = bob.machine.ISVMachine(self.m_isvbase)
def read_model(self, model_file): """Reads the ISV Machine that holds the model""" print("model: %s" %model_file) machine = bob.machine.ISVMachine(bob.io.HDF5File(model_file)) machine.isv_base = self.m_isvbase
src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/utils/miris.py xbob.thesis.elshafey2014(Download)
# 2/ ISV Enrollment isvmachine = bob.machine.ISVMachine(isvbase) isv_enrol_data = [] data_c = data[ENROLLMENT_CLASS]
src/m/a/maskattack.study-1.0.0/maskattack/study/analyze/isv.py maskattack.study(Download)
for j in range(0,len(array[0])): array_isv = numpy.ndarray(shape=(ubm.dim_c*ubm.dim_d,), dtype=numpy.float64) isv_machine = bob.machine.ISVMachine(isvbase) isv_machine.estimate_ux(array[i][j], array_isv) list.append(array_isv)
for client_features in dev_enrol_dct_ubm: for enroll_feature in client_features: isv_machine = bob.machine.ISVMachine(isvbase) isv_trainer.enrol(isv_machine,[enroll_feature],1) dev_models.append(isv_machine) test_models = [] for client_features in test_enrol_dct_ubm: for enroll_feature in client_features: isv_machine = bob.machine.ISVMachine(isvbase)