Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(43)  |  Call(43)  |  Derive(0)  |  Import(0)

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/utils/miris.py   xbob.thesis.elshafey2014(Download)
  gmm = bob.machine.GMMMachine(2,2)
 
  ivecmachine = bob.machine.IVectorMachine(ubm, 2)
  ivectrainer = bob.trainer.IVectorTrainer(True, 0.001, 100)
 

src/x/b/xbob.spkrec-1.0.3/xbob/spkrec/tools/IVector.py   xbob.spkrec(Download)
 
    # create a IVectorMachine with the UBM from the base class
    self.m_ivector = bob.machine.IVectorMachine(self.m_ubm, self.m_config.rt) #This is the dimension of the T matrix. It is tipically equal to 400. 
    self.m_ivector.variance_threshold = 1e-5 
 
  def load_enroler(self, enroler_file):
    """Reads the UBM model from file"""
    # now, load the JFA base, if it is included in the file
 
    self.m_ivector = bob.machine.IVectorMachine(self.m_ubm, self.m_config.rt)
  def project_ivector(self, feature_array, projected_ubm):
    m_ivector = bob.machine.IVectorMachine(self.m_ivector)
    projected_ivector = m_ivector.forward(projected_ubm)
    return projected_ivector
 

src/b/o/bob.spear-1.1.2/spear/tools/IVector.py   bob.spear(Download)
 
    # create a IVectorMachine with the UBM from the base class
    self.m_ivector = bob.machine.IVectorMachine(self.m_ubm, self.m_config.rt) #This is the dimension of the T matrix. It is tipically equal to 400. 
    self.m_ivector.variance_threshold = 1e-5 
 
  def load_enroler(self, enroler_file):
    """Reads the UBM model from file"""
    # now, load the JFA base, if it is included in the file
 
    self.m_ivector = bob.machine.IVectorMachine(self.m_ubm, self.m_config.rt)
  def project_ivector(self, feature_array, projected_ubm):
    m_ivector = bob.machine.IVectorMachine(self.m_ivector)
    projected_ivector = m_ivector.forward(projected_ubm)
    return projected_ivector
 

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/scripts/para_ivector.py   xbob.thesis.elshafey2014(Download)
      # Perform IVector initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      ivector_machine = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      ivector_machine.variance_threshold = self.m_tool.m_variance_threshold
      # Creates the IVectorTrainer and call the initialization procedure
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      m.variance_threshold = self.m_tool.m_variance_threshold
      # Load machine
      machine_file = self.m_configuration.ivector_intermediate_file % self.m_args.iteration
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(machine_file))
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      m.variance_threshold = self.m_tool.m_variance_threshold
      # Load machine
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(old_machine_file))

src/f/a/facereclib-1.2.1/facereclib/script/para_ubm_faceverify_ivector.py   facereclib(Download)
      # Perform IVector initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      ivector_machine = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      ivector_machine.variance_threshold = self.m_tool.m_variance_threshold
      # Creates the IVectorTrainer and call the initialization procedure
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      m.variance_threshold = self.m_tool.m_variance_threshold
      # Load machine
      machine_file = self.m_configuration.ivector_intermediate_file % self.m_args.iteration
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(machine_file))
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      m.variance_threshold = self.m_tool.m_variance_threshold
      # Load machine
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(old_machine_file))

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/tools/IVector.py   xbob.thesis.elshafey2014(Download)
  def _train_ivector(self, data):
    """Train the IVector model given a dataset"""
    utils.info("  -> Training IVector enroller")
    self.m_tv = bob.machine.IVectorMachine(self.m_ubm, self.m_subspace_dimension_of_t)
    self.m_tv.variance_threshold = self.m_variance_threshold
  def _load_projector_ivector_resolved(self, ivec_filename):
    self.m_tv = bob.machine.IVectorMachine(bob.io.HDF5File(ivec_filename))
    # add UBM model from base class
    self.m_tv.ubm = self.m_ubm
 
    # Load Enroller
    hdf5file.cd('/Enroller')
    self.m_tv = bob.machine.IVectorMachine(hdf5file)
    # add UBM model from base class
    self.m_tv.ubm = self.m_ubm

src/x/b/xbob.spkrec-1.0.3/xbob/spkrec/script/para_ubm_spkverif_ivector.py   xbob.spkrec(Download)
      # Perform IVector initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_configuration.projector_file))
      ivector_machine = bob.machine.IVectorMachine(ubm, self.m_tool.m_config.rt)
      ivector_machine.variance_threshold = self.m_tool.m_config.variance_threshold
      # Creates the IVectorTrainer and call the initialization procedure
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_configuration.projector_file))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_config.rt)
      m.variance_threshold = self.m_tool.m_config.variance_threshold
      # Load machine
      machine_file = self.m_configuration.ivector_intermediate_file % self.m_args.iteration
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(machine_file))
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_configuration.projector_file))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_config.rt)
      m.variance_threshold = self.m_tool.m_config.variance_threshold
      # Load machine
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(old_machine_file))

src/f/a/facereclib-HEAD/facereclib/script/para_ubm_faceverify_ivector.py   facereclib(Download)
      # Perform IVector initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      ivector_machine = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      ivector_machine.variance_threshold = self.m_tool.m_variance_threshold
      # Creates the IVectorTrainer and call the initialization procedure
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      m.variance_threshold = self.m_tool.m_variance_threshold
      # Load machine
      machine_file = self.m_configuration.ivector_intermediate_file % self.m_args.iteration
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(machine_file))
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_tool.m_gmm_filename))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_subspace_dimension_of_t)
      m.variance_threshold = self.m_tool.m_variance_threshold
      # Load machine
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(old_machine_file))

src/b/o/bob.spear-1.1.2/spear/script/para_ubm_spkverif_ivector.py   bob.spear(Download)
      # Perform IVector initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_configuration.projector_file))
      ivector_machine = bob.machine.IVectorMachine(ubm, self.m_tool.m_config.rt)
      ivector_machine.variance_threshold = self.m_tool.m_config.variance_threshold
      # Creates the IVectorTrainer and call the initialization procedure
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_configuration.projector_file))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_config.rt)
      m.variance_threshold = self.m_tool.m_config.variance_threshold
      # Load machine
      machine_file = self.m_configuration.ivector_intermediate_file % self.m_args.iteration
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(machine_file))
      # Temporary machine used for initialization
      ubm = bob.machine.GMMMachine(bob.io.HDF5File(self.m_configuration.projector_file))
      m = bob.machine.IVectorMachine(ubm, self.m_tool.m_config.rt)
      m.variance_threshold = self.m_tool.m_config.variance_threshold
      # Load machine
      ivector_machine = bob.machine.IVectorMachine(bob.io.HDF5File(old_machine_file))

src/f/a/facereclib-1.2.1/facereclib/tools/IVector.py   facereclib(Download)
  def _train_ivector(self, data):
    """Train the IVector model given a dataset"""
    utils.info("  -> Training IVector enroller")
    self.m_tv = bob.machine.IVectorMachine(self.m_ubm, self.m_subspace_dimension_of_t)
    self.m_tv.variance_threshold = self.m_variance_threshold
  def _load_projector_ivector_resolved(self, ivec_filename):
    self.m_tv = bob.machine.IVectorMachine(bob.io.HDF5File(ivec_filename))
    # add UBM model from base class
    self.m_tv.ubm = self.m_ubm
 
    # Load Enroller
    hdf5file.cd('/Enroller')
    self.m_tv = bob.machine.IVectorMachine(hdf5file)
    # add UBM model from base class
    self.m_tv.ubm = self.m_ubm

  1 | 2  Next