Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(12)  |  Call(12)  |  Derive(0)  |  Import(0)

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/tools/JFA.py   xbob.thesis.elshafey2014(Download)
      self._load_projector_jfa(projector_file)
 
    self.m_machine = bob.machine.JFAMachine(self.m_jfabase)
    self.m_trainer = bob.trainer.JFATrainer(self.m_jfa_training_iterations)
    self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
  def _project_jfa(self, projected_ubm):
    projected_jfa = numpy.ndarray(shape=(self.m_ubm.dim_c*self.m_ubm.dim_d,), dtype=numpy.float64)
    model = bob.machine.JFAMachine(self.m_jfabase)
    model.estimate_ux(projected_ubm, projected_jfa)
    return projected_jfa
  def read_model(self, model_file):
    """Reads the JFA Machine that holds the model"""
    machine = bob.machine.JFAMachine(bob.io.HDF5File(model_file))
    machine.jfa_base = self.m_jfabase
    return machine

src/x/b/xbob.thesis.elshafey2014-0.0.1a0/xbob/thesis/elshafey2014/utils/miris.py   xbob.thesis.elshafey2014(Download)
  # 2/ JFA Enrollment
  figure = mpl.figure()
  jfamachine = bob.machine.JFAMachine(jfabase)
  jfa_enrol_data = []
  data_c = data['Metosa']

src/f/a/facereclib-1.2.1/facereclib/tools/JFA.py   facereclib(Download)
    self.m_jfabase.ubm = self.m_ubm
 
    self.m_machine = bob.machine.JFAMachine(self.m_jfabase)
    self.m_trainer = bob.trainer.JFATrainer()
    self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
  def read_model(self, model_file):
    """Reads the JFA Machine that holds the model"""
    machine = bob.machine.JFAMachine(bob.io.HDF5File(model_file))
    machine.jfa_base = self.m_jfabase
    return machine

src/f/a/facereclib-HEAD/facereclib/tools/JFA.py   facereclib(Download)
    self.m_jfabase.ubm = self.m_ubm
 
    self.m_machine = bob.machine.JFAMachine(self.m_jfabase)
    self.m_trainer = bob.trainer.JFATrainer()
    self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
  def read_model(self, model_file):
    """Reads the JFA Machine that holds the model"""
    machine = bob.machine.JFAMachine(bob.io.HDF5File(model_file))
    machine.jfa_base = self.m_jfabase
    return machine

src/x/b/xbob.spkrec-1.0.3/xbob/spkrec/tools/JFA.py   xbob.spkrec(Download)
    self.m_jfabase.ubm = self.m_ubm
 
    self.m_machine = bob.machine.JFAMachine(self.m_jfabase)
    self.m_trainer = bob.trainer.JFATrainer()
    self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
  def read_model(self, model_file):
    """Reads the JFA Machine that holds the model"""
    machine = bob.machine.JFAMachine(bob.io.HDF5File(model_file))
    machine.jfa_base = self.m_jfabase
    return machine

src/b/o/bob.spear-1.1.2/spear/tools/JFA.py   bob.spear(Download)
    self.m_jfabase.ubm = self.m_ubm
 
    self.m_machine = bob.machine.JFAMachine(self.m_jfabase)
    self.m_trainer = bob.trainer.JFATrainer()
    self.m_trainer.rng = bob.core.random.mt19937(self.m_init_seed)
  def read_model(self, model_file):
    """Reads the JFA Machine that holds the model"""
    machine = bob.machine.JFAMachine(bob.io.HDF5File(model_file))
    machine.jfa_base = self.m_jfabase
    return machine