Did I find the right examples for you? yes no

All Samples(0)  |  Call(0)  |  Derive(0)  |  Import(0)

src/c/e/CellProfiler-HEAD/cellprofiler/modules/tests/test_maskobjects.py   CellProfiler(Download)
            (OUTPUT_OBJECTS, M.I.M_LOCATION_CENTER_X, cpmeas.COLTYPE_FLOAT),
            (OUTPUT_OBJECTS, M.I.M_LOCATION_CENTER_Y, cpmeas.COLTYPE_FLOAT),
            (OUTPUT_OBJECTS, M.I.FF_PARENT % INPUT_OBJECTS, cpmeas.COLTYPE_INTEGER),
            (OUTPUT_OBJECTS, M.I.M_NUMBER_OBJECT_NUMBER, cpmeas.COLTYPE_INTEGER),
            (INPUT_OBJECTS, M.I.FF_CHILDREN_COUNT % OUTPUT_OBJECTS, cpmeas.COLTYPE_INTEGER)):
            (OUTPUT_OBJECTS, M.I.M_LOCATION_CENTER_Y),
            (OUTPUT_OBJECTS, M.I.M_NUMBER_OBJECT_NUMBER),
            (OUTPUT_OBJECTS, M.I.FF_PARENT % INPUT_OBJECTS),
            (INPUT_OBJECTS, M.I.FF_CHILDREN_COUNT % OUTPUT_OBJECTS)):
            data = m.get_current_measurement(object_name, feature)
            (OUTPUT_OBJECTS, M.I.M_LOCATION_CENTER_Y, expected_y),
            (OUTPUT_OBJECTS, M.I.M_NUMBER_OBJECT_NUMBER, np.array([1, 2])),
            (OUTPUT_OBJECTS, M.I.FF_PARENT % INPUT_OBJECTS, np.array([1, 2])),
            (INPUT_OBJECTS, M.I.FF_CHILDREN_COUNT % OUTPUT_OBJECTS, np.array([1, 1]))):
            data = m.get_current_measurement(object_name, feature)
            (OUTPUT_OBJECTS, M.I.M_LOCATION_CENTER_Y, expected_y),
            (OUTPUT_OBJECTS, M.I.M_NUMBER_OBJECT_NUMBER, np.array([1, 2])),
            (OUTPUT_OBJECTS, M.I.FF_PARENT % INPUT_OBJECTS, np.array([1, 2])),
            (INPUT_OBJECTS, M.I.FF_CHILDREN_COUNT % OUTPUT_OBJECTS, np.array([1, 1]))):
            data = m.get_current_measurement(object_name, feature)
            (OUTPUT_OBJECTS, M.I.M_LOCATION_CENTER_Y, expected_y),
            (OUTPUT_OBJECTS, M.I.M_NUMBER_OBJECT_NUMBER, np.array([1, 2])),
            (OUTPUT_OBJECTS, M.I.FF_PARENT % INPUT_OBJECTS, np.array([1, 3])),
            (INPUT_OBJECTS, M.I.FF_CHILDREN_COUNT % OUTPUT_OBJECTS, np.array([1, 0, 1]))):
            data = m.get_current_measurement(object_name, feature)