Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(1)  |  Call(0)  |  Derive(0)  |  Import(1)
Compute Cholesky decomposition of banded matrix.

Parameters
----------
l : ndarray
    A matrix on which to perform the Cholesky decomposition.
mininf : float, optional
    Entries in the `l` matrix are considered negative if they are less
    than this value (default 0.0).
verbose : bool, optional(more...)

        def cholesky_band(l,mininf=0.0,verbose=False):
    """Compute Cholesky decomposition of banded matrix.

    Parameters
    ----------
    l : ndarray
        A matrix on which to perform the Cholesky decomposition.
    mininf : float, optional
        Entries in the `l` matrix are considered negative if they are less
        than this value (default 0.0).
    verbose : bool, optional
        If set to ``True``, print some debugging information.

    Returns
    -------
    cholesky_band : tuple
        If problems were detected, the first item will be the index or
        indexes where the problem was detected, and the second item will simply
        be the input matrix.  If no problems were detected, the first item
        will be -1, and the second item will be the Cholesky decomposition.
    """
    import numpy as np
    lower = l.copy()
    bw,nn = lower.shape
    n = nn - bw
    if verbose:
        print(lower[0,0:n])
    negative = lower[0,0:n] <= mininf
    if negative.any() or not np.all(np.isfinite(lower)):
        if verbose:
            print('Bad entries.')
            print(negative.nonzero()[0])
        return (negative.nonzero()[0],l)
    kn = bw - 1
    spot = np.arange(kn,dtype='i4') + 1
    bi = np.arange(kn,dtype='i4')
    for i in range(1,kn):
        bi = np.append(bi, np.arange(kn-i,dtype='i4') + (kn+1)*i)
    for j in range(n):
        lower[0,j] = np.sqrt(lower[0,j])
        lower[spot,j] /= lower[0,j]
        x = lower[spot,j]
        if not np.all(np.isfinite(x)):
            if verbose:
                print('NaN found in cholesky_band.')
            return (j,l)
        hmm = np.outer(x,x)
        here = bi+(j+1)*bw
        lower.T.flat[here] -= hmm.flat[bi]
    return (-1,lower)
        


src/p/y/pydl-0.2.1/pydl/pydlutils/bspline/__init__.py   pydl(Download)
"""
from bspline import bspline
from cholesky_band import cholesky_band
from cholesky_solve import cholesky_solve
from iterfit import iterfit