Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(14)  |  Call(8)  |  Derive(0)  |  Import(6)

src/c/o/cogent-1.5.3/cogent/maths/stats/test.py   cogent(Download)
from __future__ import division
import warnings
from cogent.maths.stats.distribution import chi_high, z_low, z_high, zprob, \
    t_high, t_low, tprob, f_high, f_low, fprob, binomial_high, binomial_low, \
    ndtri
        return dfn, dfd, F, f_low(dfn, dfd, F)
    elif tails == 'high':
        return dfn, dfd, F, f_high(dfn, dfd, F)
    else:
        if var(a) >= var(b):
    between_MS = between_MS/dfn
    F = between_MS/within_MS
    return dfn, dfd, F, between_MS, within_MS, group_means, f_high(dfn, dfd, F)
 
def MonteCarloP(value, rand_values, tail = 'high'):

src/p/y/pycogent-HEAD/cogent/maths/stats/test.py   pycogent(Download)
from __future__ import division
import warnings
from cogent.maths.stats.distribution import chi_high, z_low, z_high, zprob, \
    t_high, t_low, tprob, f_high, f_low, fprob, binomial_high, binomial_low, \
    ndtri
        return dfn, dfd, F, f_low(dfn, dfd, F)
    elif tails == 'high':
        return dfn, dfd, F, f_high(dfn, dfd, F)
    else:
        if var(a) >= var(b):
    between_MS = between_MS/dfn
    F = between_MS/within_MS
    return dfn, dfd, F, between_MS, within_MS, group_means, f_high(dfn, dfd, F)
 
def MonteCarloP(value, rand_values, tail = 'high'):

src/q/i/qiime-1.8.0/qiime/pycogent_backports/test.py   qiime(Download)
from __future__ import division
import warnings
from cogent.maths.stats.distribution import (chi_high, z_low, z_high, zprob,
    t_high, t_low, tprob, f_high, f_low, fprob, binomial_high, binomial_low,
    ndtri)
        return dfn, dfd, F, f_low(dfn, dfd, F)
    elif tails == 'high':
        return dfn, dfd, F, f_high(dfn, dfd, F)
    else:
        if var(a) >= var(b):
    between_Groups = between_Groups/dfn
    F = between_Groups/within_Groups
    return F, f_high(dfn, dfd, F)
 
def MonteCarloP(value, rand_values, tail = 'high'):

src/q/i/qiime-HEAD/qiime/pycogent_backports/test.py   qiime(Download)
from __future__ import division
import warnings
from cogent.maths.stats.distribution import (chi_high, z_low, z_high, zprob,
                                             t_high, t_low, tprob, f_high, f_low, fprob, binomial_high, binomial_low,
                                             ndtri)
        return dfn, dfd, F, f_low(dfn, dfd, F)
    elif tails == 'high':
        return dfn, dfd, F, f_high(dfn, dfd, F)
    else:
        if var(a) >= var(b):
    between_Groups = between_Groups / dfn
    F = between_Groups / within_Groups
    return F, f_high(dfn, dfd, F)
 
 

src/c/o/cogent-1.5.3/tests/test_maths/test_stats/test_distribution.py   cogent(Download)
 
from cogent.util.unit_test import TestCase, main
from cogent.maths.stats.distribution import z_low, z_high, zprob, chi_low, \
    chi_high, t_low, t_high, tprob, poisson_high, poisson_low, poisson_exact, \
    binomial_high, binomial_low, binomial_exact, f_low, f_high, fprob, \

src/p/y/pycogent-HEAD/tests/test_maths/test_stats/test_distribution.py   pycogent(Download)
 
from cogent.util.unit_test import TestCase, main
from cogent.maths.stats.distribution import z_low, z_high, zprob, chi_low, \
    chi_high, t_low, t_high, tprob, poisson_high, poisson_low, poisson_exact, \
    binomial_high, binomial_low, binomial_exact, f_low, f_high, fprob, \