Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(8)  |  Call(6)  |  Derive(0)  |  Import(2)

src/c/o/cogent-1.5.3/cogent/maths/stats/distribution.py   cogent(Download)
"""
from __future__ import division
from cogent.maths.stats.special import erf, erfc, igamc, igam, betai, log1p, \
    expm1, SQRTH, MACHEP, MAXNUM, PI, ndtri, incbi, igami, fix_rounding_error,\
    ln_binomial
    if df < 1:
        raise ValueError, "chi_high: df must be >= 1 (got %s)." % df
    return igamc(df/2, x/2)
 
def t_low(t, df):
    if m < 0:
        raise ValueError, "Poisson m must be >= 0."
    return igamc(k+1, m)
 
def pdtrc(k, m):
    if x < 0.0:
        raise ZeroDivisionError, "x must be at least 0."
    return igamc(b, a * x)
 
#note: ndtri for the normal distribution is already imported

src/p/y/pycogent-HEAD/cogent/maths/stats/distribution.py   pycogent(Download)
"""
from __future__ import division
from cogent.maths.stats.special import erf, erfc, igamc, igam, betai, log1p, \
    expm1, SQRTH, MACHEP, MAXNUM, PI, ndtri, incbi, igami, fix_rounding_error,\
    ln_binomial
    if df < 1:
        raise ValueError, "chi_high: df must be >= 1 (got %s)." % df
    return igamc(df/2, x/2)
 
def t_low(t, df):
    if m < 0:
        raise ValueError, "Poisson m must be >= 0."
    return igamc(k+1, m)
 
def pdtrc(k, m):
    if x < 0.0:
        raise ZeroDivisionError, "x must be at least 0."
    return igamc(b, a * x)
 
#note: ndtri for the normal distribution is already imported