Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(13) | Call(8) | Derive(0) | Import(5)
src/p/a/paddle-1.0.2/paddle/unstable/sgp_realDU.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _st, _replaceAtoms, _saveDict, sparsity ra = sp.random
E = full_out['rec_err'] + full_out['l1_pen_U'] + full_out['l1_pen_D'] + full_out['l2_pen'] if pars['eta'] > 0: full_out['cod_err'] = _cost_cod(C, X, U, pars) E += full_out['cod_err'] return E, full_out
def _costC(Y): return _cost_cod(Y, X, U, pars) f = pars['eta']/(N*K) C, iters = _pgd(C, f*XUt.T, f*XXt, _costC, axis=1, bound=pars['Cbound'], verbose=pars['verbose'], rtol=pars['rtol']) timeC = time.time() - start
src/p/a/paddle-1.0.2/paddle/unstable/sgp_real.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _st, _replaceAtoms, _saveDict, sparsity ra = sp.random
E = full_out['rec_err'] + full_out['l1_pen'] + full_out['l2_pen'] if pars['eta'] > 0: full_out['cod_err'] = _cost_cod(C, X, U, pars) E += full_out['cod_err'] return E, full_out
def _costC(Y): return _cost_cod(Y, X, U, pars) f = pars['eta']/(N*K) C, iters = _pgd(C, f*XUt.T, f*XXt, _costC, axis=1, bound=pars['Cbound'], verbose=pars['verbose'], rtol=pars['rtol']) timeC = time.time() - start
src/p/a/paddle-1.0.2/paddle/unstable/sgp.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _st, _replaceAtoms, _saveDict ra = sp.random
E = full_out['rec_err'] + full_out['l1_pen'] + full_out['l2_pen'] if pars['eta'] > 0: full_out['cod_err'] = _cost_cod(C, X, U, pars) E += full_out['cod_err'] return E, full_out
def _costC(Y): return _cost_cod(Y, X, U, pars) f = pars['eta']/(N*K) C, iters = _pgd(C, f*XUt.T, f*XXt, _costC, axis=1, bound=pars['Cbound'], verbose=pars['verbose'], rtol=pars['rtol']) timeC = time.time() - start
src/p/a/paddle-1.0.2/paddle/dual.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _replaceAtoms, _saveDict from prox import _st ra = sp.random
E = full_out['rec_err'] + full_out['l1_pen'] + full_out['l2_pen'] if pars['eta'] > 0: full_out['cod_err'] = _cost_cod(C, X, U, pars) E += full_out['cod_err'] return E, full_out
def _costC(Y): return _cost_cod(Y, X, U, pars) f = pars['eta']/(N*K) C, iters = _pgd(C, f*XUt.T, f*XXt, _costC, axis=1, bound=pars['Cbound'], verbose=pars['verbose'], rtol=pars['rtol']) timeC = time.time() - start
src/p/a/paddle-1.0.2/paddle/unstable/dual_l1.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _replaceAtoms, _saveDict, sparsity import prox ra = sp.random