Did I find the right examples for you? yes no Crawl my project Python Jobs
All Samples(23) | Call(16) | Derive(0) | Import(7)
src/p/a/paddle-1.0.2/paddle/unstable/sgp_realDU.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _st, _replaceAtoms, _saveDict, sparsity ra = sp.random
rows, cols = pars['save_shape'] # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # save the dual _saveDict(C.T, U, rows, cols, path = pars['save_path']+'dictC_'+str(i), sorted = pars['save_sorted'])
print 'X.max() = %f, X.min() = %f' % (X.max(), X.min()) D0, C0, U0 = init(X, K, rnd=False) _saveDict(D0, U0, Nrows = nrows, Ncols = 25, path = './savedRDict_init.png', sorted = sorted) U0 = sp.clip(U0, 0, sp.inf) D, C, U, full_out = learn(X, D0, C0, U0, tau_U=tau_U, tau_D=tau_D, mu=1.e-8, eta=0., maxiter=200, minused=1, verbose=False, rtol_sgp=rtol_sgp) print 'Nof negative D elements = %d / %d' % (sp.where(D < 0, 1, 0).sum(), K*d) print 'Nof negative U elements = %d / %d' % (sp.where(U < 0, 1, 0).sum(), K*N) _saveDict(D, U, Nrows = nrows, Ncols = 25, path = './savedDict.png', sorted = sorted)
src/p/a/paddle-1.0.2/paddle/unstable/sgp_real.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _st, _replaceAtoms, _saveDict, sparsity ra = sp.random
rows, cols = pars['save_shape'] # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # save the dual _saveDict(C.T, U, rows, cols, path = pars['save_path']+'dictC_'+str(i), sorted = pars['save_sorted'])
print 'Nof negative D elements = %d / %d' % (sp.where(D < 0, 1, 0).sum(), K*d) _saveDict(D, U, Nrows = 8, Ncols = 25, path = './savedDict.png', sorted = True) _saveRep(sp.dot(D, U), X, Nrows = 8, Ncols = 25, path = './savedRep.png')
U0 = U D, C, U, full_out = learn(X, D0, C0, U0, tau=0.1, mu=1.e-8, eta=0., maxiter=8, minused=1) _saveDict(D, U, Nrows = 8, Ncols = 25, path = './savedDict_test.png', sorted = True) _saveRep(sp.dot(D, U), X, Nrows = 8, Ncols = 25, path = './savedRep_test.png') sys.exit(0)
src/p/a/paddle-1.0.2/paddle/unstable/dual_l1.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _replaceAtoms, _saveDict, sparsity import prox ra = sp.random
U = sp.dot(C, X) # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # save the dual _saveDict(C.T, U, rows, cols, path = pars['save_path']+'dictC_'+str(i), sorted = pars['save_sorted'])
src/p/a/paddle-1.0.2/paddle/unstable/sgp.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _st, _replaceAtoms, _saveDict ra = sp.random
rows, cols = pars['save_shape'] # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # save the dual _saveDict(C.T, U, rows, cols, path = pars['save_path']+'dictC_'+str(i), sorted = pars['save_sorted'])
src/p/a/paddle-1.0.2/paddle/dual.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _cost_cod, _replaceAtoms, _saveDict from prox import _st ra = sp.random
rows, cols = pars['save_shape'] # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # save the dual _saveDict(C.T, U, rows, cols, path = pars['save_path']+'dictC_'+str(i), sorted = pars['save_sorted'])
src/p/a/paddle-1.0.2/paddle/unstable/tight2.py paddle(Download)
import scipy as sp import pylab from common import _cost_rec, _replaceAtoms, _saveDict, print_frame_assessment, sparsity import ntframes, prox
rows, cols = pars['save_shape'] # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # 1 ------- sparse coding step
src/p/a/paddle-1.0.2/paddle/tight.py paddle(Download)
import scipy import pylab from common import _cost_rec, _replaceAtoms, _saveDict, print_frame_assessment from prox import _st
rows, cols = pars['save_shape'] # save the dictionary _saveDict(D, U, rows, cols, path = pars['save_path']+'dictD_'+str(i), sorted = pars['save_sorted']) # 1 ------- sparse coding step