Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(8)  |  Call(0)  |  Derive(0)  |  Import(8)
set() -> new empty set object
set(iterable) -> new set object

Build an unordered collection of unique elements.

src/c/o/ConceptNet-5.2.2/conceptnet5/readers/conceptnet4.py   ConceptNet(Download)
from conceptnet5.nodes import normalized_concept_uri
from conceptnet5.edges import make_edge
from conceptnet5.uri import join_uri, Licenses, normalize_text, BAD_NAMES_FOR_THINGS
 
# bedume is a prolific OMCS contributor who seemed to go off the rails at some
        return True
    if (
        parts_dict["startText"].strip() in BAD_NAMES_FOR_THINGS or
        parts_dict["endText"].strip() in BAD_NAMES_FOR_THINGS
    ):

src/c/o/conceptnet5-HEAD/conceptnet5/readers/conceptnet4.py   conceptnet5(Download)
from conceptnet5.nodes import normalized_concept_uri
from conceptnet5.edges import make_edge
from conceptnet5.uri import join_uri, Licenses, normalize_text, BAD_NAMES_FOR_THINGS
 
# bedume is a prolific OMCS contributor who seemed to go off the rails at some
        return True
    if (
        parts_dict["startText"].strip() in BAD_NAMES_FOR_THINGS or
        parts_dict["endText"].strip() in BAD_NAMES_FOR_THINGS
    ):

src/c/o/ConceptNet-5.2.2/conceptnet5/nodes.py   ConceptNet(Download)
 
from metanl.nltk_morphy import normalize as normalize_english
from conceptnet5.uri import normalize_text, concept_uri, split_uri, BAD_NAMES_FOR_THINGS
 
 
        lang = uri_pieces[1]
        text = uri_pieces[4].replace('_', ' ')
        if text not in BAD_NAMES_FOR_THINGS:
            disambig = normalized_concept_name(lang, text)
            lemmas.extend(disambig.split('_'))

src/c/o/conceptnet5-HEAD/conceptnet5/nodes.py   conceptnet5(Download)
 
from metanl.nltk_morphy import normalize as normalize_english
from conceptnet5.uri import normalize_text, concept_uri, split_uri, BAD_NAMES_FOR_THINGS
 
 
        lang = uri_pieces[1]
        text = uri_pieces[4].replace('_', ' ')
        if text not in BAD_NAMES_FOR_THINGS:
            disambig = normalized_concept_name(lang, text)
            lemmas.extend(disambig.split('_'))

src/c/o/ConceptNet-5.2.2/conceptnet5/readers/wiktionary_en.py   ConceptNet(Download)
from xml.sax import ContentHandler, make_parser
from xml.sax.handler import feature_namespaces
from conceptnet5.uri import Licenses, BAD_NAMES_FOR_THINGS
from conceptnet5.nodes import normalized_concept_uri
from conceptnet5.edges import make_edge
def term_is_bad(term):
    return (term in BAD_NAMES_FOR_THINGS or 'Wik' in term or ':' in term)
 
 
PARTS_OF_SPEECH = {

src/c/o/ConceptNet-5.2.2/conceptnet5/readers/jmdict.py   ConceptNet(Download)
from conceptnet5.util.language_codes import CODE_TO_ENGLISH_NAME, ENGLISH_NAME_TO_CODE
from conceptnet5.formats.json_stream import JSONStreamWriter
from conceptnet5.uri import Licenses, BAD_NAMES_FOR_THINGS
from conceptnet5.nodes import normalized_concept_uri
from conceptnet5.edges import make_edge
                if (
                    text is not None and '.' not in text and text.count(' ') <= 4
                    and text not in BAD_NAMES_FOR_THINGS
                ):
                    for head in headwords:

src/c/o/conceptnet5-HEAD/conceptnet5/readers/wiktionary_en.py   conceptnet5(Download)
from xml.sax import ContentHandler, make_parser
from xml.sax.handler import feature_namespaces
from conceptnet5.uri import Licenses, BAD_NAMES_FOR_THINGS
from conceptnet5.nodes import normalized_concept_uri
from conceptnet5.edges import make_edge
def term_is_bad(term):
    return (term in BAD_NAMES_FOR_THINGS or 'Wik' in term or ':' in term)
 
 
PARTS_OF_SPEECH = {

src/c/o/conceptnet5-HEAD/conceptnet5/readers/jmdict.py   conceptnet5(Download)
from conceptnet5.util.language_codes import CODE_TO_ENGLISH_NAME, ENGLISH_NAME_TO_CODE
from conceptnet5.formats.json_stream import JSONStreamWriter
from conceptnet5.uri import Licenses, BAD_NAMES_FOR_THINGS
from conceptnet5.nodes import normalized_concept_uri
from conceptnet5.edges import make_edge
                if (
                    text is not None and '.' not in text and text.count(' ') <= 4
                    and text not in BAD_NAMES_FOR_THINGS
                ):
                    for head in headwords: