Did I find the right examples for you? yes no

All Samples(36)  |  Call(36)  |  Derive(0)  |  Import(0)

src/c/o/cobrapy-HEAD/cobra/oven/danielhyduke/jython/scipy/sparse/compressed.py   cobrapy(Download)
                self.data    = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, np.intc)
                self.indptr  = np.zeros(self._swap((M,N))[0] + 1, dtype=np.intc)
            else:
                if len(arg1) == 2:
                    raise ValueError,'unable to infer matrix dimensions'
                else:
                    self.shape = self._swap((major_dim,minor_dim))
 
        if dtype is not None:
        """
        #use _swap to determine proper bounds
        major_name,minor_name = self._swap(('row','column'))
        major_dim,minor_dim = self._swap(self.shape)
 
    def _mul_sparse_matrix(self, other):
        M, K1 = self.shape
        K2, N = other.shape
 
        major_axis = self._swap((M,N))[0]

src/s/c/scipy-HEAD/scipy/sparse/compressed.py   scipy(Download)
                self.data    = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, np.intc)
                self.indptr  = np.zeros(self._swap((M,N))[0] + 1, dtype=np.intc)
            else:
                if len(arg1) == 2:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    self.shape = self._swap((major_dim,minor_dim))
 
        if dtype is not None:
        """
        #use _swap to determine proper bounds
        major_name,minor_name = self._swap(('row','column'))
        major_dim,minor_dim = self._swap(self.shape)
 
    def _mul_sparse_matrix(self, other):
        M, K1 = self.shape
        K2, N = other.shape
 
        major_axis = self._swap((M,N))[0]