Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(13)  |  Call(13)  |  Derive(0)  |  Import(0)

src/f/c/fcm-0.9.1/src/statistics/cluster.py   fcm(Download)
                                           weights0=self._prior_pi, alpha0=self.alpha0,
                                           gpu=self.device, parallel=self.parallel, verbose=verbose)
        self.hdp.sample(niter=self.niter, nburn=self.burnin, thin=1, ident=self.ident, tune_interval=tune_interval)
 
 

src/d/p/dpmix-HEAD/bench/bench_hdp.py   dpmix(Download)
    mcmc = HDPNormalMixture(data, ncomp=100, gpu=[0,1,2], 
                            parallel=True, verbose=100)
    mcmc.sample(1000, nburn=2000, tune_interval=50)
    imcmc = HDPNormalMixture(mcmc, verbose=100)
    imcmc.sample(1000, nburn=0, ident=True)
    mcmc = HDPNormalMixture(data, ncomp=100, gpu=[0], 
                            parallel=False, verbose=100)
    mcmc.sample(1000, nburn=2000, tune_interval=50)
    imcmc = HDPNormalMixture(mcmc, verbose=100)
    imcmc.sample(1000, nburn=0, ident=True)
    mcmc = HDPNormalMixture(data, ncomp=100, gpu=False, 
                            parallel=False, verbose=10)
    mcmc.sample(50, nburn=100, tune_interval=25)
    imcmc = HDPNormalMixture(mcmc, verbose=10)
    imcmc.sample(50, nburn=0, ident=True)

src/d/p/dpmix-HEAD/tests/test_bounds.py   dpmix(Download)
        print
        mcmc = HDPNormalMixture(xs, ncomp=nclust, gpu=device, parallel=True, verbose=2)
        mcmc.sample(burnin, nburn=0, tune_interval=5)
        imcmc = HDPNormalMixture(mcmc, verbose=2)
        imcmc.sample(niter, nburn=0, ident=True)

src/d/p/dpmix-0.3/tests/test_bounds.py   dpmix(Download)
        print
        mcmc = HDPNormalMixture(xs, ncomp=nclust, gpu=device, parallel=True, verbose=2)
        mcmc.sample(burnin, nburn=0, tune_interval=5)
        imcmc = HDPNormalMixture(mcmc, verbose=2)
        imcmc.sample(niter, nburn=0, ident=True)