Did I find the right examples for you? yes no

All Samples(14)  |  Call(14)  |  Derive(0)  |  Import(0)
reduce(a, axis=0, dtype=None, out=None, keepdims=False)

Reduces `a`'s dimension by one, by applying ufunc along one axis.

Let :math:`a.shape = (N_0, ..., N_i, ..., N_{M-1})`.  Then
:math:`ufunc.reduce(a, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
ufunc to each :math:`a[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
For a one-dimensional array, reduce produces results equivalent to:
::(more...)

src/n/u/nupic-linux64-HEAD/lib64/python2.6/site-packages/numpy/core/_methods.py   nupic-linux64(Download)
def _amax(a, axis=None, out=None, keepdims=False):
    return um.maximum.reduce(a, axis=axis,
                            out=out, keepdims=keepdims)
 
def _amin(a, axis=None, out=None, keepdims=False):

src/n/u/numpy-1.8.1/numpy/core/_methods.py   numpy(Download)
def _amax(a, axis=None, out=None, keepdims=False):
    return um.maximum.reduce(a, axis=axis,
                            out=out, keepdims=keepdims)
 
def _amin(a, axis=None, out=None, keepdims=False):

src/s/p/Spherebot-Host-GUI-HEAD/InkscapePortable/App/Inkscape/python/Lib/site-packages/numpy/oldnumeric/ma.py   Spherebot-Host-GUI(Download)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.maximum.reduce (t, axis))
        else:
            t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)

src/p/y/Pymol-script-repo-HEAD/modules/pdb2pqr/contrib/numpy-1.1.0/numpy/oldnumeric/ma.py   Pymol-script-repo(Download)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.maximum.reduce (t, axis))
        else:
            t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)

src/n/u/nupic-linux64-HEAD/lib64/python2.6/site-packages/numpy/oldnumeric/ma.py   nupic-linux64(Download)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.maximum.reduce (t, axis))
        else:
            t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)

src/m/i/MissionPlanner-HEAD/Lib/site-packages/numpy/oldnumeric/ma.py   MissionPlanner(Download)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.maximum.reduce (t, axis))
        else:
            t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)

src/n/u/numpy-1.8.1/numpy/oldnumeric/ma.py   numpy(Download)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.maximum.reduce (t, axis))
        else:
            t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)

src/p/y/Pymol-script-repo-HEAD/modules/pdb2pqr/contrib/numpy-1.1.0/numpy/core/tests/test_umath.py   Pymol-script-repo(Download)
    def check_reduce_complex(self):
        assert_equal(maximum.reduce([1,2j]),1)
        assert_equal(maximum.reduce([1+3j,2j]),1+3j)
 
class TestMinimum(NumpyTestCase):