Did I find the right examples for you? yes no

All Samples(8)  |  Call(8)  |  Derive(0)  |  Import(0)
Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.

Parameters
----------
c : array_like(more...)

        def herm2poly(c) :
    """
    Convert a Hermite series to a polynomial.

    Convert an array representing the coefficients of a Hermite series,
    ordered from lowest degree to highest, to an array of the coefficients
    of the equivalent polynomial (relative to the "standard" basis) ordered
    from lowest to highest degree.

    Parameters
    ----------
    c : array_like
        1-D array containing the Hermite series coefficients, ordered
        from lowest order term to highest.

    Returns
    -------
    pol : ndarray
        1-D array containing the coefficients of the equivalent polynomial
        (relative to the "standard" basis) ordered from lowest order term
        to highest.

    See Also
    --------
    poly2herm

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy.polynomial.hermite import herm2poly
    >>> herm2poly([ 1.   ,  2.75 ,  0.5  ,  0.375])
    array([ 0.,  1.,  2.,  3.])

    """
    from .polynomial import polyadd, polysub, polymulx

    [c] = pu.as_series([c])
    n = len(c)
    if n == 1:
        return c
    if n == 2:
        c[1] *= 2
        return c
    else:
        c0 = c[-2]
        c1 = c[-1]
        # i is the current degree of c1
        for i in range(n - 1, 1, -1) :
            tmp = c0
            c0 = polysub(c[i - 2], c1*(2*(i - 1)))
            c1 = polyadd(tmp, polymulx(c1)*2)
        return polyadd(c0, polymulx(c1)*2)
        


src/n/u/nupic-linux64-HEAD/lib64/python2.6/site-packages/numpy/polynomial/tests/test_hermite.py   nupic-linux64(Download)
            hermpol = herm.poly2herm(pol)
            hermint = herm.hermint(hermpol, m=1, k=[i])
            res = herm.herm2poly(hermint)
            assert_almost_equal(trim(res), trim(tgt))
 
            hermpol = herm.poly2herm(pol)
            hermint = herm.hermint(hermpol, m=1, k=[i], scl=2)
            res = herm.herm2poly(hermint)
            assert_almost_equal(trim(res), trim(tgt))
 
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(herm.herm2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt)
 
    def test_herm2poly(self) :
        for i in range(10) :
            assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i])
 
    def test_poly2herm(self) :

src/n/u/numpy-1.8.1/numpy/polynomial/tests/test_hermite.py   numpy(Download)
            hermpol = herm.poly2herm(pol)
            hermint = herm.hermint(hermpol, m=1, k=[i])
            res = herm.herm2poly(hermint)
            assert_almost_equal(trim(res), trim(tgt))
 
            hermpol = herm.poly2herm(pol)
            hermint = herm.hermint(hermpol, m=1, k=[i], scl=2)
            res = herm.herm2poly(hermint)
            assert_almost_equal(trim(res), trim(tgt))
 
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(herm.herm2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt)
 
    def test_herm2poly(self) :
        for i in range(10) :
            assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i])
 
    def test_poly2herm(self) :