Did I find the right examples for you? yes no

# numpy.polynomial.hermite.herm2poly

All Samples(8)  |  Call(8)  |  Derive(0)  |  Import(0)
```Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.

Parameters
----------
c : array_like(more...)
```

```        def herm2poly(c) :
"""
Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.

Parameters
----------
c : array_like
1-D array containing the Hermite series coefficients, ordered
from lowest order term to highest.

Returns
-------
pol : ndarray
1-D array containing the coefficients of the equivalent polynomial
(relative to the "standard" basis) ordered from lowest order term
to highest.

See Also
--------
poly2herm

Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples
--------
>>> from numpy.polynomial.hermite import herm2poly
>>> herm2poly([ 1.   ,  2.75 ,  0.5  ,  0.375])
array([ 0.,  1.,  2.,  3.])

"""
from .polynomial import polyadd, polysub, polymulx

[c] = pu.as_series([c])
n = len(c)
if n == 1:
return c
if n == 2:
c[1] *= 2
return c
else:
c0 = c[-2]
c1 = c[-1]
# i is the current degree of c1
for i in range(n - 1, 1, -1) :
tmp = c0
c0 = polysub(c[i - 2], c1*(2*(i - 1)))
c1 = polyadd(tmp, polymulx(c1)*2)
return polyadd(c0, polymulx(c1)*2)
```

src/n/u/nupic-linux64-HEAD/lib64/python2.6/site-packages/numpy/polynomial/tests/test_hermite.py   nupic-linux64(Download)
```            hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i])
res = herm.herm2poly(hermint)
assert_almost_equal(trim(res), trim(tgt))

```
```            hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i], scl=2)
res = herm.herm2poly(hermint)
assert_almost_equal(trim(res), trim(tgt))

```
```            tgt = 0
assert_(len(pol) == i + 1)
assert_almost_equal(herm.herm2poly(pol)[-1], 1)
assert_almost_equal(res, tgt)

```
```    def test_herm2poly(self) :
for i in range(10) :
assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i])

def test_poly2herm(self) :
```

src/n/u/numpy-1.8.1/numpy/polynomial/tests/test_hermite.py   numpy(Download)
```            hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i])
res = herm.herm2poly(hermint)
assert_almost_equal(trim(res), trim(tgt))

```
```            hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i], scl=2)
res = herm.herm2poly(hermint)
assert_almost_equal(trim(res), trim(tgt))

```
```            tgt = 0
assert_(len(pol) == i + 1)
assert_almost_equal(herm.herm2poly(pol)[-1], 1)
assert_almost_equal(res, tgt)

```
```    def test_herm2poly(self) :
for i in range(10) :
assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i])

def test_poly2herm(self) :
```