All Samples(20) | Call(20) | Derive(0) | Import(0)
Evaluate a Laguerre series at points x. If `c` is of length `n + 1`, this function returns the value: .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x) The parameter `x` is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either case, either `x` or its elements must support multiplication and addition both with themselves and with the elements of `c`.(more...)
def lagval(x, c, tensor=True): """ Evaluate a Laguerre series at points x. If `c` is of length `n + 1`, this function returns the value: .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x) The parameter `x` is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either case, either `x` or its elements must support multiplication and addition both with themselves and with the elements of `c`. If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If `c` is multidimensional, then the shape of the result depends on the value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that scalars have shape (,). Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern. Parameters ---------- x : array_like, compatible object If `x` is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, `x` or its elements must support addition and multiplication with with themselves and with the elements of `c`. c : array_like Array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If `c` is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the coefficients may be thought of as stored in the columns of `c`. tensor : boolean, optional If True, the shape of the coefficient array is extended with ones on the right, one for each dimension of `x`. Scalars have dimension 0 for this action. The result is that every column of coefficients in `c` is evaluated for every element of `x`. If False, `x` is broadcast over the columns of `c` for the evaluation. This keyword is useful when `c` is multidimensional. The default value is True. .. versionadded:: 1.7.0 Returns ------- values : ndarray, algebra_like The shape of the return value is described above. See Also -------- lagval2d, laggrid2d, lagval3d, laggrid3d Notes ----- The evaluation uses Clenshaw recursion, aka synthetic division. Examples -------- >>> from numpy.polynomial.laguerre import lagval >>> coef = [1,2,3] >>> lagval(1, coef) -0.5 >>> lagval([[1,2],[3,4]], coef) array([[-0.5, -4. ], [-4.5, -2. ]]) """ c = np.array(c, ndmin=1, copy=0) if c.dtype.char in '?bBhHiIlLqQpP': c = c.astype(np.double) if isinstance(x, (tuple, list)): x = np.asarray(x) if isinstance(x, np.ndarray) and tensor: c = c.reshape(c.shape + (1,)*x.ndim) if len(c) == 1 : c0 = c[0] c1 = 0 elif len(c) == 2 : c0 = c[0] c1 = c[1] else : nd = len(c) c0 = c[-2] c1 = c[-1] for i in range(3, len(c) + 1) : tmp = c0 nd = nd - 1 c0 = c[-i] - (c1*(nd - 1))/nd c1 = tmp + (c1*((2*nd - 1) - x))/nd return c0 + c1*(1 - x)
def test_lagmul(self) : # check values of result for i in range(5) : pol1 = [0]*i + [1] val1 = lag.lagval(self.x, pol1) for j in range(5) : msg = "At i=%d, j=%d" % (i,j) pol2 = [0]*j + [1] val2 = lag.lagval(self.x, pol2)
val2 = lag.lagval(self.x, pol2) pol3 = lag.lagmul(pol1, pol2) val3 = lag.lagval(self.x, pol3) assert_(len(pol3) == i + j + 1, msg) assert_almost_equal(val3, val1*val2, err_msg=msg)
ser = np.zeros tgt = y[i] res = lag.lagval(x, [0]*i + [1]) assert_almost_equal(res, tgt, err_msg=msg)
lagpol = lag.poly2lag(pol) lagint = lag.lagint(lagpol, m=1, k=[i], lbnd=-1) assert_almost_equal(lag.lagval(-1, lagint), i) # check single integration with integration constant and scaling
src/n/u/numpy-1.8.1/numpy/polynomial/tests/test_laguerre.py numpy(Download)
def test_lagmul(self) : # check values of result for i in range(5) : pol1 = [0]*i + [1] val1 = lag.lagval(self.x, pol1) for j in range(5) : msg = "At i=%d, j=%d" % (i, j) pol2 = [0]*j + [1] val2 = lag.lagval(self.x, pol2)
val2 = lag.lagval(self.x, pol2) pol3 = lag.lagmul(pol1, pol2) val3 = lag.lagval(self.x, pol3) assert_(len(pol3) == i + j + 1, msg) assert_almost_equal(val3, val1*val2, err_msg=msg)
ser = np.zeros tgt = y[i] res = lag.lagval(x, [0]*i + [1]) assert_almost_equal(res, tgt, err_msg=msg)
lagpol = lag.poly2lag(pol) lagint = lag.lagint(lagpol, m=1, k=[i], lbnd=-1) assert_almost_equal(lag.lagval(-1, lagint), i) # check single integration with integration constant and scaling