Did I find the right examples for you? yes no

All Samples(4)  |  Call(4)  |  Derive(0)  |  Import(0)
Return argument as a list of 1-d arrays.

The returned list contains array(s) of dtype double, complex double, or
object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
raises a Value Error if it is not first reshaped into either a 1-d or 2-d
array.

Parameters(more...)

        def as_series(alist, trim=True) :
    """
    Return argument as a list of 1-d arrays.

    The returned list contains array(s) of dtype double, complex double, or
    object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
    size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
    of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
    raises a Value Error if it is not first reshaped into either a 1-d or 2-d
    array.

    Parameters
    ----------
    a : array_like
        A 1- or 2-d array_like
    trim : boolean, optional
        When True, trailing zeros are removed from the inputs.
        When False, the inputs are passed through intact.

    Returns
    -------
    [a1, a2,...] : list of 1-D arrays
        A copy of the input data as a list of 1-d arrays.

    Raises
    ------
    ValueError
        Raised when `as_series` cannot convert its input to 1-d arrays, or at
        least one of the resulting arrays is empty.

    Examples
    --------
    >>> from numpy import polynomial as P
    >>> a = np.arange(4)
    >>> P.as_series(a)
    [array([ 0.]), array([ 1.]), array([ 2.]), array([ 3.])]
    >>> b = np.arange(6).reshape((2,3))
    >>> P.as_series(b)
    [array([ 0.,  1.,  2.]), array([ 3.,  4.,  5.])]

    """
    arrays = [np.array(a, ndmin=1, copy=0) for a in alist]
    if min([a.size for a in arrays]) == 0 :
        raise ValueError("Coefficient array is empty")
    if any([a.ndim != 1 for a in arrays]) :
        raise ValueError("Coefficient array is not 1-d")
    if trim :
        arrays = [trimseq(a) for a in arrays]

    if any([a.dtype == np.dtype(object) for a in arrays]) :
        ret = []
        for a in arrays :
            if a.dtype != np.dtype(object) :
                tmp = np.empty(len(a), dtype=np.dtype(object))
                tmp[:] = a[:]
                ret.append(tmp)
            else :
                ret.append(a.copy())
    else :
        try :
            dtype = np.common_type(*arrays)
        except :
            raise ValueError("Coefficient arrays have no common type")
        ret = [np.array(a, copy=1, dtype=dtype) for a in arrays]
    return ret
        


src/s/p/Spherebot-Host-GUI-HEAD/InkscapePortable/App/Inkscape/python/Lib/site-packages/numpy/polynomial/tests/test_polyutils.py   Spherebot-Host-GUI(Download)
                ci = np.ones(1, types[i])
                cj = np.ones(1, types[j])
                [resi, resj] = pu.as_series([ci, cj])
                assert_(resi.dtype.char == resj.dtype.char)
                assert_(resj.dtype.char == types[i])

src/n/u/nupic-linux64-HEAD/lib64/python2.6/site-packages/numpy/polynomial/tests/test_polyutils.py   nupic-linux64(Download)
                ci = np.ones(1, types[i])
                cj = np.ones(1, types[j])
                [resi, resj] = pu.as_series([ci, cj])
                assert_(resi.dtype.char == resj.dtype.char)
                assert_(resj.dtype.char == types[i])

src/m/i/MissionPlanner-HEAD/Lib/site-packages/numpy/polynomial/tests/test_polyutils.py   MissionPlanner(Download)
                ci = np.ones(1, types[i])
                cj = np.ones(1, types[j])
                [resi, resj] = pu.as_series([ci, cj])
                assert_(resi.dtype.char == resj.dtype.char)
                assert_(resj.dtype.char == types[i])

src/n/u/numpy-1.8.1/numpy/polynomial/tests/test_polyutils.py   numpy(Download)
                ci = np.ones(1, types[i])
                cj = np.ones(1, types[j])
                [resi, resj] = pu.as_series([ci, cj])
                assert_(resi.dtype.char == resj.dtype.char)
                assert_(resj.dtype.char == types[i])