Did I find the right examples for you? yes no

numpy

All Samples(46863)  |  Call(2)  |  Derive(0)  |  Import(46861)
```NumPy
=====

Provides
1. An array object of arbitrary homogeneous items
2. Fast mathematical operations over arrays
3. Linear Algebra, Fourier Transforms, Random Number Generation

How to use the documentation
----------------------------(more...)
```

```"""

import numpy as np
import matplotlib.finance as fin
import matplotlib.pyplot as plt
```

```"""

import numpy as np
import matplotlib.finance as fin
import matplotlib.pyplot as plt
```

```"""

import numpy as np
import matplotlib.finance as fin
import matplotlib.pyplot as plt
```

```"""

import numpy
from nupic.data.file import File

```

```from cvxpy import *
import cvxpy.interface as intf
import numpy as np
from base_test import BaseTest
import cvxopt
```
```    def test_readme_examples(self):
import cvxopt
import numpy

# Problem data.
```
```        ####################################################

import numpy as np
import cvxopt
from multiprocessing import Pool
```
```    def test_portfolio_problem(self):
"""Test portfolio problem that caused dcp_attr errors.
"""
import numpy as np
import scipy.sparse as sp
```
```    def test_intro(self):
"""Test examples from cvxpy.org introduction.
"""
import numpy

```

```    from PyAstronomy.modelSuite import palTrans
import matplotlib.pylab as mpl
import numpy

# Create a PalLC instance
```
```    from PyAstronomy.modelSuite import palTrans
import matplotlib.pylab as mpl
import numpy

# Create a PalLC instance
```
```    from PyAstronomy.modelSuite import palTrans
import matplotlib.pylab as mpl
import numpy

# Create a PalLC_Rebin instance
```

```import numpy as np
import statsmodels.api as sm
from statsmodels.tsa.api import VAR, SVAR
import matplotlib.pyplot as plt
import statsmodels.tsa.vector_ar.util as util
```

```
from statsmodels.compat.python import range
import numpy as np

from statsmodels.tsa.stattools import acovf
```

```
from __future__ import print_function
import numpy as np
from numpy.testing import assert_almost_equal

```

```"""