Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(4)  |  Call(2)  |  Derive(0)  |  Import(2)

src/p/y/pylearn2-HEAD/pylearn2/scripts/papers/jia_huang_wkshp_11/extract_features.py   pylearn2(Download)
from theano import tensor as T
from theano import function
from pylearn2.datasets.preprocessing import ExtractPatches, ExtractGridPatches, ReassembleGridPatches
from pylearn2.utils import serial
from pylearn2.utils.rng import make_np_rng
        dataset.compress = False
 
        patchifier = ExtractGridPatches( patch_shape = (size,size), patch_stride = (1,1) )
 
        pipeline = serial.load(dataset_descriptor.pipeline_path)

src/p/y/pylearn2-HEAD/pylearn2/datasets/tests/test_preprocessing.py   pylearn2(Download)
from pylearn2.datasets import dense_design_matrix
from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix
from pylearn2.datasets.preprocessing import (GlobalContrastNormalization,
                                             ExtractGridPatches,
                                             ReassembleGridPatches,
    patch_shape = (3, 7)
 
    extractor = ExtractGridPatches(patch_shape, patch_shape)
    reassemblor = ReassembleGridPatches(patch_shape=patch_shape,
                                        orig_shape=topo.shape[1:3])