Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(6)  |  Call(5)  |  Derive(0)  |  Import(1)

src/p/y/pylearn2-HEAD/pylearn2/scripts/tutorials/grbm_smd/make_dataset.py   pylearn2(Download)
    # to train an RBM on these
    pipeline.items.append(
        preprocessing.ExtractPatches(patch_shape=(8, 8), num_patches=150000)
    )
 

src/p/y/pylearn2-HEAD/pylearn2/scripts/datasets/make_stl10_patches_8x8.py   pylearn2(Download)
print "Preprocessing the data..."
pipeline = preprocessing.Pipeline()
pipeline.items.append(preprocessing.ExtractPatches(patch_shape=(8,8),num_patches=2*1000*1000))
pipeline.items.append(preprocessing.GlobalContrastNormalization(sqrt_bias=10., use_std=True))
pipeline.items.append(preprocessing.ZCA())

src/p/y/pylearn2-HEAD/pylearn2/scripts/datasets/make_stl10_patches.py   pylearn2(Download)
print "Preprocessing the data..."
pipeline = preprocessing.Pipeline()
pipeline.items.append(preprocessing.ExtractPatches(patch_shape=(6,6),num_patches=2*1000*1000))
pipeline.items.append(preprocessing.GlobalContrastNormalization(use_std=True, sqrt_bias=10.))
pipeline.items.append(preprocessing.ZCA())

src/p/y/pylearn2-HEAD/pylearn2/scripts/datasets/make_cifar100_patches_8x8.py   pylearn2(Download)
print "Preprocessing the data..."
pipeline = preprocessing.Pipeline()
pipeline.items.append(preprocessing.ExtractPatches(patch_shape=(8,8),num_patches=2*1000*1000))
pipeline.items.append(preprocessing.GlobalContrastNormalization(sqrt_bias=10., use_std=True))
pipeline.items.append(preprocessing.ZCA())

src/p/y/pylearn2-HEAD/pylearn2/scripts/datasets/make_cifar100_patches.py   pylearn2(Download)
print "Preprocessing the data..."
pipeline = preprocessing.Pipeline()
pipeline.items.append(preprocessing.ExtractPatches(patch_shape=(6,6),num_patches=2*1000*1000))
pipeline.items.append(preprocessing.GlobalContrastNormalization(sqrt_bias=10., use_std=True))
pipeline.items.append(preprocessing.ZCA())

src/p/y/pylearn2-HEAD/pylearn2/scripts/papers/jia_huang_wkshp_11/extract_features.py   pylearn2(Download)
from theano import tensor as T
from theano import function
from pylearn2.datasets.preprocessing import ExtractPatches, ExtractGridPatches, ReassembleGridPatches
from pylearn2.utils import serial
from pylearn2.utils.rng import make_np_rng