Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(5)  |  Call(4)  |  Derive(0)  |  Import(1)

src/p/y/pylearn2-HEAD/pylearn2/models/mlp.py   pylearn2(Download)
from pylearn2.utils import wraps
 
from pylearn2.expr.nnet import (kl, compute_precision,
                                    compute_recall, compute_f1)
 
        precision = compute_precision(tp, fp)
        recall = compute_recall(y, fp)
        f1 = compute_f1(precision, recall)
 
        rval['precision'] = precision
        rval['per_output_recall_min'] = recall.min()
 
        f1 = compute_f1(precision, recall)
 
        rval['per_output_f1_max'] = f1.max()
            precision = compute_precision(tp, fp)
            recall = compute_recall(y, tp)
            f1 = compute_f1(precision, recall)
 
            rval['precision'] = precision
            rval['per_output_recall_min'] = recall.min()
 
            f1 = compute_f1(precision, recall)
 
            rval['per_output_f1_max'] = f1.max()