Did I find the right examples for you? yes no


src/n/i/NiPy-OLD-HEAD/examples/neurospin/neurospy/FSL_pre_processing.py   NiPy-OLD(Download)
    sigma = fwhm/(voxel_width*2*sqrt(2*log(2)))
    for i in fmri.data:
        sn.gaussian_filter(i, sigma, order=0, output=None,
                           mode='reflect', cval=0.0)
    fmri.save(outputFile)

src/s/c/scikit-image-0.8.2/doc/examples/plot_regional_maxima.py   scikit-image(Download)
from skimage import img_as_float
from skimage.morphology import reconstruction
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
 
# Convert to float: Important for subtraction later which won't work with uint8
image = img_as_float(data.coins())
image = gaussian_filter(image, 1)

src/s/c/scikits-image-0.7.1/doc/source/auto_examples/plot_regional_maxima.py   scikits-image(Download)
from skimage import img_as_float
from skimage.morphology import reconstruction
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
 
# Convert to float: Important for subtraction later which won't work with uint8
image = img_as_float(data.coins())
image = gaussian_filter(image, 1)

src/s/c/scikits-image-0.7.1/doc/source/auto_examples/plot_random_walker_segmentation.py   scikits-image(Download)
    points = l * generator.rand(2, n ** 2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l / (4. * n))
    return (mask > mask.mean()).astype(np.float)
 

src/s/c/scikits-image-0.7.1/doc/source/auto_examples/plot_medial_transform.py   scikits-image(Download)
    points = l * generator.rand(2, n**2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l/(4.*n))
    return mask > mask.mean()
 

src/s/c/scikits-image-0.7.1/doc/examples/plot_random_walker_segmentation.py   scikits-image(Download)
    points = l * generator.rand(2, n ** 2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l / (4. * n))
    return (mask > mask.mean()).astype(np.float)
 

src/s/c/scikits-image-0.7.1/doc/examples/plot_medial_transform.py   scikits-image(Download)
    points = l * generator.rand(2, n**2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l/(4.*n))
    return mask > mask.mean()
 

src/s/c/scikit-image-0.8.2/doc/examples/plot_random_walker_segmentation.py   scikit-image(Download)
    points = l * generator.rand(2, n ** 2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l / (4. * n))
    return (mask > mask.mean()).astype(np.float)
 

src/s/c/scikit-image-0.8.2/doc/examples/plot_medial_transform.py   scikit-image(Download)
    points = l * generator.rand(2, n**2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l/(4.*n))
    return mask > mask.mean()
 

src/s/c/scikit-learn-0.13.1/examples/applications/plot_tomography_l1_reconstruction.py   scikit-learn(Download)
    points = l * rs.rand(2, n_pts)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
    res = np.logical_and(mask > mask.mean(), mask_outer)
    return res - ndimage.binary_erosion(res)

  1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  Next