All Samples(311) | Call(286) | Derive(0) | Import(25)
src/s/c/scikit-learn-0.14.1/sklearn/datasets/tests/test_samples_generator.py scikit-learn(Download)
import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
src/s/c/scikit-learn-0.14.1/sklearn/linear_model/tests/test_sgd.py scikit-learn(Download)
from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater
p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert_true(np.all(p[0] >= 0))
# should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @raises(ValueError)
clf = self.factory(alpha=0.0001, n_iter=1000, class_weight=None).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf.predict(X)), 0.96, decimal=1) # make the same prediction using automated class_weight clf_auto = self.factory(alpha=0.0001, n_iter=1000, class_weight="auto").fit(X, y) assert_almost_equal(metrics.f1_score(y, clf_auto.predict(X)), 0.96,
src/s/c/scikit-learn-0.14.1/sklearn/metrics/tests/test_metrics.py scikit-learn(Download)
from sklearn.utils import check_random_state, shuffle from sklearn.utils.multiclass import unique_labels from sklearn.utils.testing import (assert_true, assert_raises, assert_raise_message,
expected_auc = _auc(y_true, probas_pred) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) with warnings.catch_warnings(record=True): assert_almost_equal(roc_auc, auc_score(y_true, probas_pred))
assert_array_almost_equal(fs, 0.76, 2) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2), (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2)
y_pred = np.array([2, 0, 1, 1, 2, 0]) assert_almost_equal(precision_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(recall_score(y_true, y_pred, average='weighted'),
src/s/c/scikit-learn-0.14.1/sklearn/tree/tests/test_tree.py scikit-learn(Download)
from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises
reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result,
clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name))
reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name))
src/s/c/scikit-learn-0.14.1/sklearn/tests/test_random_projection.py scikit-learn(Download)
GaussianRandomProjection) from sklearn.utils.testing import ( assert_less, assert_raises,
# - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1),
src/s/c/scikit-learn-0.14.1/sklearn/utils/tests/test_extmath.py scikit-learn(Download)
from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal
def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum())
# ensure that the singular values of both methods are equal up to the real # rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va))
# compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_almost_equal(s[:rank], sa[:rank])
src/s/c/scikit-learn-0.14.1/sklearn/decomposition/tests/test_fastica.py scikit-learn(Download)
from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true
# Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_)
# Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1)
src/s/c/scikit-learn-0.14.1/sklearn/decomposition/tests/test_pca.py scikit-learn(Download)
from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true
pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X)
# the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA)
assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components)) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components))
src/s/c/scikit-learn-0.14.1/sklearn/tests/test_dummy.py scikit-learn(Download)
from sklearn.base import clone from sklearn.externals.six.moves import xrange from sklearn.utils.testing import (assert_array_equal, assert_equal, assert_almost_equal,
y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y)
for k in xrange(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y)
src/s/c/scikit-learn-0.14.1/sklearn/tests/test_multiclass.py scikit-learn(Download)
from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false
Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5.
1 | 2 | 3 Next