Did I find the right examples for you? yes no

All Samples(8)  |  Call(0)  |  Derive(4)  |  Import(4)

src/s/c/scipy-0.13.3/scipy/sparse/compressed.py   scipy(Download)
from .dia import dia_matrix
from . import sparsetools
from .sputils import upcast, upcast_char, to_native, isdense, isshape, \
     getdtype, isscalarlike, isintlike, IndexMixin
 
 
class _cs_matrix(_data_matrix, _minmax_mixin, IndexMixin):

src/s/c/scipy-0.13.3/scipy/sparse/lil.py   scipy(Download)
 
from .base import spmatrix, isspmatrix
from .sputils import getdtype, isshape, issequence, isscalarlike, ismatrix, \
    IndexMixin, upcast_scalar
 
from warnings import warn
from .base import SparseEfficiencyWarning
 
 
class lil_matrix(spmatrix, IndexMixin):

src/s/c/scipy-0.13.3/scipy/sparse/csr.py   scipy(Download)
from .sparsetools import csr_tocsc, csr_tobsr, csr_count_blocks, \
        get_csr_submatrix, csr_sample_values
from .sputils import upcast, isintlike, IndexMixin, issequence
 
from .compressed import _cs_matrix
 
 
class csr_matrix(_cs_matrix, IndexMixin):

src/s/c/scipy-0.13.3/scipy/sparse/csc.py   scipy(Download)
from .sparsetools import csc_tocsr
from . import sparsetools
from .sputils import upcast, isintlike, IndexMixin
 
from .compressed import _cs_matrix
 
 
class csc_matrix(_cs_matrix, IndexMixin):