Did I find the right examples for you? yes no

All Samples(14)  |  Call(7)  |  Derive(0)  |  Import(7)

src/s/c/scipy-0.13.3/scipy/sparse/compressed.py   scipy(Download)
from .dia import dia_matrix
from . import sparsetools
from .sputils import upcast, upcast_char, to_native, isdense, isshape, \
     getdtype, isscalarlike, isintlike, IndexMixin
 
        self.indptr = np.asarray(self.indptr, dtype=np.intc)
        self.indices = np.asarray(self.indices, dtype=np.intc)
        self.data = to_native(self.data)
 
        # check array shapes

src/c/o/cobrapy-HEAD/cobra/oven/danielhyduke/jython/scipy/sparse/compressed.py   cobrapy(Download)
from data import _data_matrix
import sparsetools
from sputils import upcast, to_native, isdense, isshape, getdtype, \
        isscalarlike, isintlike
 
        self.indptr  = np.asarray(self.indptr,  dtype=np.intc)
        self.indices = np.asarray(self.indices, dtype=np.intc)
        self.data    = to_native(self.data)
 
        # check array shapes

src/s/c/scipy-HEAD/scipy/sparse/compressed.py   scipy(Download)
from data import _data_matrix
import sparsetools
from sputils import upcast, upcast_char, to_native, isdense, isshape, \
     getdtype, isscalarlike, isintlike
 
        self.indptr  = np.asarray(self.indptr,  dtype=np.intc)
        self.indices = np.asarray(self.indices, dtype=np.intc)
        self.data    = to_native(self.data)
 
        # check array shapes

src/s/c/scipy-0.13.3/scipy/sparse/coo.py   scipy(Download)
from .base import isspmatrix
from .data import _data_matrix, _minmax_mixin
from .sputils import upcast, upcast_char, to_native, isshape, getdtype, isintlike
 
 
        self.row = np.asarray(self.row, dtype=np.intc)
        self.col = np.asarray(self.col, dtype=np.intc)
        self.data = to_native(self.data)
 
        if nnz > 0:

src/s/c/scipy-HEAD/scipy/sparse/coo.py   scipy(Download)
from base import isspmatrix
from data import _data_matrix
from sputils import upcast, upcast_char, to_native, isshape, getdtype, isintlike
 
class coo_matrix(_data_matrix):
        self.row  = np.asarray(self.row, dtype=np.intc)
        self.col  = np.asarray(self.col, dtype=np.intc)
        self.data = to_native(self.data)
 
        if nnz > 0:

src/s/c/scipy-0.13.3/scipy/sparse/bsr.py   scipy(Download)
from .compressed import _cs_matrix
from .base import isspmatrix, _formats
from .sputils import isshape, getdtype, to_native, upcast
from . import sparsetools
from .sparsetools import bsr_matvec, bsr_matvecs, csr_matmat_pass1, \
        self.indptr = np.asarray(self.indptr, np.intc)
        self.indices = np.asarray(self.indices, np.intc)
        self.data = to_native(self.data)
 
        # check array shapes

src/s/c/scipy-HEAD/scipy/sparse/bsr.py   scipy(Download)
from compressed import _cs_matrix
from base import isspmatrix, _formats
from sputils import isshape, getdtype, to_native, upcast
import sparsetools
from sparsetools import bsr_matvec, bsr_matvecs, csr_matmat_pass1, \
        self.indptr  = np.asarray(self.indptr, np.intc)
        self.indices = np.asarray(self.indices, np.intc)
        self.data    = to_native(self.data)
 
        # check array shapes