Did I find the right examples for you? yes no

All Samples(2)  |  Call(2)  |  Derive(0)  |  Import(0)
Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A

A must be a square, symmetric, positive-definite
and non-singular matrix.

Examples
========

>>> from sympy.matrices import Matrix(more...)

src/s/y/sympy-0.7.5/sympy/matrices/tests/test_immutable.py   sympy(Download)
    assert X.T == X
    assert X.is_symmetric
    assert type(X.cholesky()) == ImmutableMatrix
    L, D = X.LDLdecomposition()
    assert (type(L), type(D)) == (ImmutableMatrix, ImmutableMatrix)

src/s/y/sympy-HEAD/sympy/matrices/tests/test_immutable.py   sympy(Download)
    assert X.T == X
    assert X.is_symmetric
    assert type(X.cholesky()) == ImmutableMatrix
    L, D = X.LDLdecomposition()
    assert (type(L), type(D)) == (ImmutableMatrix, ImmutableMatrix)