Did I find the right examples for you? yes no

sympy.combinatorics.permutations.Permutation

All Samples(855)  |  Call(818)  |  Derive(0)  |  Import(37)
```A permutation, alternatively known as an 'arrangement number' or 'ordering'
is an arrangement of the elements of an ordered list into a one-to-one
mapping with itself. The permutation of a given arrangement is given by
indicating the positions of the elements after re-arrangment [2]_. For
example, if one started with elements [x, y, a, b] (in that order) and
they were reordered as [x, y, b, a] then the permutation would be
[0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred
to as 0 and the permutation uses the indices of the elements in the
original ordering, not the elements (a, b, etc...) themselves.
(more...)
```

src/s/y/sympy-0.7.5/sympy/combinatorics/generators.py   sympy(Download)
```from __future__ import print_function, division

from sympy.combinatorics.permutations import Permutation
from sympy.utilities.iterables import variations, rotate_left
from sympy.core.symbol import symbols
```
```    """
for perm in variations(list(range(n)), n):
yield Permutation(perm)

```
```    gen = list(range(n))
for i in xrange(n):
yield Permutation(gen)
gen = rotate_left(gen, 1)

```
```    """
for perm in variations(list(range(n)), n):
p = Permutation(perm)
if p.is_even:
yield p
```
```    """
if n == 1:
yield Permutation([0, 1])
yield Permutation([1, 0])
elif n == 2:
```

src/s/y/sympy-HEAD/sympy/combinatorics/generators.py   sympy(Download)
```from __future__ import print_function, division

from sympy.combinatorics.permutations import Permutation
from sympy.utilities.iterables import variations, rotate_left
from sympy.core.symbol import symbols
```
```    """
for perm in variations(list(range(n)), n):
yield Permutation(perm)

```
```    gen = list(range(n))
for i in xrange(n):
yield Permutation(gen)
gen = rotate_left(gen, 1)

```
```    """
for perm in variations(list(range(n)), n):
p = Permutation(perm)
if p.is_even:
yield p
```
```    """
if n == 1:
yield Permutation([0, 1])
yield Permutation([1, 0])
elif n == 2:
```

src/s/y/sympy-0.7.5/sympy/combinatorics/named_groups.py   sympy(Download)
```from __future__ import print_function, division

from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.group_constructs import DirectProduct
from sympy.combinatorics.permutations import Permutation
```
```    # small cases are special
if n in (1, 2):
return PermutationGroup([Permutation([0])])

a = list(range(n))
```
```    # small cases are special
if n == 1:
return PermutationGroup([Permutation([1, 0])])
if n == 2:
return PermutationGroup([Permutation([1, 0, 3, 2]),
Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])])
```

src/s/y/sympy-HEAD/sympy/combinatorics/named_groups.py   sympy(Download)
```from __future__ import print_function, division

from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.group_constructs import DirectProduct
from sympy.combinatorics.permutations import Permutation
```
```    # small cases are special
if n in (1, 2):
return PermutationGroup([Permutation([0])])

a = list(range(n))
```
```    # small cases are special
if n == 1:
return PermutationGroup([Permutation([1, 0])])
if n == 2:
return PermutationGroup([Permutation([1, 0, 3, 2]),
Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])])
```

src/s/y/sympy-0.7.5/sympy/combinatorics/tests/test_permutations.py   sympy(Download)
```from itertools import permutations

from sympy.combinatorics.permutations import (Permutation, _af_parity,
_af_rmul, _af_rmuln, Cycle)
from sympy.utilities.pytest import raises
```
```def test_Permutation():
# don't auto fill 0
raises(ValueError, lambda: Permutation([1]))
p = Permutation([0, 1, 2, 3])
# call as bijective
assert [p(i) for i in range(p.size)] == list(p)
# call as operator
assert p(list(range(p.size))) == list(p)
```

src/s/y/sympy-HEAD/sympy/combinatorics/tests/test_permutations.py   sympy(Download)
```from itertools import permutations

from sympy.combinatorics.permutations import (Permutation, _af_parity,
_af_rmul, _af_rmuln, Cycle)
from sympy.utilities.pytest import raises
```
```def test_Permutation():
# don't auto fill 0
raises(ValueError, lambda: Permutation([1]))
p = Permutation([0, 1, 2, 3])
# call as bijective
assert [p(i) for i in range(p.size)] == list(p)
# call as operator
assert p(list(range(p.size))) == list(p)
```

src/s/y/sympy-0.7.5/sympy/combinatorics/tensor_can.py   sympy(Download)
```from __future__ import print_function, division

from sympy.combinatorics.permutations import Permutation, _af_rmul, _af_rmuln,\
_af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
```

src/s/y/sympy-HEAD/sympy/combinatorics/tensor_can.py   sympy(Download)
```from __future__ import print_function, division

from sympy.combinatorics.permutations import Permutation, _af_rmul, _af_rmuln,\
_af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
```

src/s/y/sympy-0.7.5/sympy/combinatorics/util.py   sympy(Download)
```from __future__ import print_function, division

from sympy.ntheory import isprime
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.core.compatibility import xrange
```

src/s/y/sympy-HEAD/sympy/combinatorics/util.py   sympy(Download)
```from __future__ import print_function, division

from sympy.ntheory import isprime
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.core.compatibility import xrange
```

1 | 2 | 3 | 4  Next