Did I find the right examples for you? yes no

All Samples(34)  |  Call(24)  |  Derive(0)  |  Import(10)
Finds the inverse, ~A, of a permutation, A, given in array form.

Examples
========

>>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
>>> A = [1, 2, 0, 3]
>>> _af_invert(A)
[2, 0, 1, 3]
>>> _af_rmul(_, A)(more...)

        def _af_invert(a):
    """
    Finds the inverse, ~A, of a permutation, A, given in array form.

    Examples
    ========

    >>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
    >>> A = [1, 2, 0, 3]
    >>> _af_invert(A)
    [2, 0, 1, 3]
    >>> _af_rmul(_, A)
    [0, 1, 2, 3]

    See Also
    ========

    Permutation, __invert__
    """
    inv_form = [0] * len(a)
    for i, ai in enumerate(a):
        inv_form[ai] = i
    return inv_form
        


src/s/y/sympy-0.7.5/sympy/combinatorics/perm_groups.py   sympy(Download)
from sympy.core import Basic
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
    _af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
                return []
            u = transversals[i][beta]._array_form
            h = _af_rmul(_af_invert(u), h)
            factors.append(beta)
        if h != I:
        r = self._r
        gens = [p._array_form for p in self.generators]
        gens_inv = [_af_invert(p) for p in gens]
        set_commutators = set()
        degree = self._degree
        for g1 in gens1:
            for g2 in gens2:
                p = _af_rmuln(g1, g2, _af_invert(g1))
                if not self.coset_factor(p, True):
                    return False
                            u1_inv = db[gb]
                        except KeyError:
                            u1_inv = db[gb] = _af_invert(u1)
                        schreier_gen = _af_rmul(u1_inv, g1)
                        h, j = _strip_af(schreier_gen, _base, orbs, transversals, i)

src/s/y/sympy-HEAD/sympy/combinatorics/perm_groups.py   sympy(Download)
from sympy.core import Basic
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
    _af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
                return []
            u = transversals[i][beta]._array_form
            h = _af_rmul(_af_invert(u), h)
            factors.append(beta)
        if h != I:
        r = self._r
        gens = [p._array_form for p in self.generators]
        gens_inv = [_af_invert(p) for p in gens]
        set_commutators = set()
        degree = self._degree
        for g1 in gens1:
            for g2 in gens2:
                p = _af_rmuln(g1, g2, _af_invert(g1))
                if not self.coset_factor(p, True):
                    return False
                            u1_inv = db[gb]
                        except KeyError:
                            u1_inv = db[gb] = _af_invert(u1)
                        schreier_gen = _af_rmul(u1_inv, g1)
                        h, j = _strip_af(schreier_gen, _base, orbs, transversals, i)

src/s/y/sympy-0.7.5/sympy/combinatorics/tensor_can.py   sympy(Download)
from __future__ import print_function, division
 
from sympy.combinatorics.permutations import Permutation, _af_rmul, _af_rmuln,\
    _af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
    for i in range(num_types):
        dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
    ginv = _af_invert(g)
    idn = list(range(size))
    # TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
            if dsgsx else None
        if Dxtrav:
            Dxtrav = [_af_invert(x) for x in Dxtrav]
        # compute the orbit of p_i
        for ii in range(num_types):
            # NEXT = s*deltab1 intersection (d*g)**-1*deltap
            dg = _af_rmul(d, g)
            dginv = _af_invert(dg)
            sdeltab = [s[x] for x in deltab1]
            gdeltap = [dginv[x] for x in deltap]

src/s/y/sympy-HEAD/sympy/combinatorics/tensor_can.py   sympy(Download)
from __future__ import print_function, division
 
from sympy.combinatorics.permutations import Permutation, _af_rmul, _af_rmuln,\
    _af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
    for i in range(num_types):
        dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
    ginv = _af_invert(g)
    idn = list(range(size))
    # TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
            if dsgsx else None
        if Dxtrav:
            Dxtrav = [_af_invert(x) for x in Dxtrav]
        # compute the orbit of p_i
        for ii in range(num_types):
            # NEXT = s*deltab1 intersection (d*g)**-1*deltap
            dg = _af_rmul(d, g)
            dginv = _af_invert(dg)
            sdeltab = [s[x] for x in deltab1]
            gdeltap = [dginv[x] for x in deltap]

src/s/y/sympy-0.7.5/sympy/combinatorics/util.py   sympy(Download)
from __future__ import print_function, division
 
from sympy.ntheory import isprime
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.core.compatibility import xrange
            return _af_new(h), i + 1
        u = transversals[i][beta]._array_form
        h = _af_rmul(_af_invert(u), h)
    return _af_new(h), base_len + 1
 
        if h == u:
            return False, base_len + 1
        h = _af_rmul(_af_invert(u), h)
    return h, base_len + 1
 

src/s/y/sympy-HEAD/sympy/combinatorics/util.py   sympy(Download)
from __future__ import print_function, division
 
from sympy.ntheory import isprime
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.core.compatibility import xrange
            return _af_new(h), i + 1
        u = transversals[i][beta]._array_form
        h = _af_rmul(_af_invert(u), h)
    return _af_new(h), base_len + 1
 
        if h == u:
            return False, base_len + 1
        h = _af_rmul(_af_invert(u), h)
    return h, base_len + 1
 

src/s/y/sympy-0.7.5/sympy/tensor/tensor.py   sympy(Download)
        of the component tensors.
        """
        from sympy.combinatorics.permutations import _af_invert
        cv = list(zip(self.components, range(len(self.components))))
        sign = 1
        components = [x[0] for x in cv]
        perm_inv = [x[1] for x in cv]
        perm = _af_invert(perm_inv)
        free = [(ind, i, perm[c]) for ind, i, c in self.free]
        free.sort()

src/s/y/sympy-HEAD/sympy/tensor/tensor.py   sympy(Download)
        of the component tensors.
        """
        from sympy.combinatorics.permutations import _af_invert
        cv = list(zip(self._components, list(range(len(self._components)))))
        sign = 1
        components = [x[0] for x in cv]
        perm_inv = [x[1] for x in cv]
        perm = _af_invert(perm_inv)
        free = [(ind, i, perm[c]) for ind, i, c in self._free]
        free.sort()

src/s/y/sympy-0.7.5/sympy/combinatorics/testutil.py   sympy(Download)
    True
    """
    from sympy.combinatorics.permutations import _af_invert
    from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize
    items = list(gr.items())
    items.sort(key=lambda x: len(x[1]), reverse=True)
    pvert = [x[0] for x in items]
    pvert = _af_invert(pvert)

src/s/y/sympy-HEAD/sympy/combinatorics/testutil.py   sympy(Download)
    True
    """
    from sympy.combinatorics.permutations import _af_invert
    from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize
    items = list(gr.items())
    items.sort(key=lambda x: len(x[1]), reverse=True)
    pvert = [x[0] for x in items]
    pvert = _af_invert(pvert)