Did I find the right examples for you? yes no

All Samples(13)  |  Call(13)  |  Derive(0)  |  Import(0)
Test whether or not a set of points are concyclic (i.e., on the same
circle). Returns True if they are concyclic, or False otherwise.

Example:
========
    >>> from sympy.geometry import Point
    >>> p1,p2 = Point(-1, 0), Point(1, 0)
    >>> p3,p4 = Point(0, 1), Point(-1, 2)
    >>> Point.is_concyclic(p1, p2, p3)
    True(more...)

src/s/y/sympy-HEAD/sympy/geometry/tests/test_geometry.py   sympy(Download)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False

src/s/y/sympy-polys-HEAD/sympy/geometry/tests/test_geometry.py   sympy-polys(Download)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
def test_concyclic_doctest_bug():
    p1,p2 = Point(-1, 0), Point(1, 0)
    p3,p4 = Point(0, 1), Point(-1, 2)
    assert Point.is_concyclic(p1, p2, p3)
    assert not Point.is_concyclic(p1, p2, p3, p4)