Did I find the right examples for you? yes no

# sympy.integrals.meijerint._rewrite_single

All Samples(10)  |  Call(8)  |  Derive(0)  |  Import(2)

```from sympy import (meijerg, I, S, integrate, Integral, oo, gamma,
hyperexpand, exp, simplify, sqrt, pi, erf, sin, cos,
exp_polar, polar_lift, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
meijerint_indefinite, _inflate_g, _create_lookup_table,
```
```    def t(expr, c, m):
e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
assert e is not None
assert isinstance(e[0][0][2], meijerg)
assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))

def tn(expr):
assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None
```
```    def u(expr, x):
from sympy import Add, exp, exp_polar
r = _rewrite_single(expr, x)
e = Add(*[res[0]*res[2] for res in r[0]]).replace(
exp_polar, exp)  # XXX Hack?
```
```    #      exp_polar).
#u(exp(x)*sin(x), x)
assert _rewrite_single(exp(x)*sin(x), x) == \
([(-sqrt(2)/(2*sqrt(pi)), 0,
meijerg(((-S(1)/2, 0, S(1)/4, S(1)/2, S(3)/4), (1,)),
```

```from sympy import (meijerg, I, S, integrate, Integral, oo, gamma,
hyperexpand, exp, simplify, sqrt, pi, erf, sin, cos,
exp_polar, polar_lift, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
meijerint_indefinite, _inflate_g, _create_lookup_table,
```
```    def t(expr, c, m):
e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
assert e is not None
assert isinstance(e[0][0][2], meijerg)
assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))

def tn(expr):
assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None
```
```    def u(expr, x):
from sympy import Add, exp, exp_polar
r = _rewrite_single(expr, x)
e = Add(*[res[0]*res[2] for res in r[0]]).replace(
exp_polar, exp)  # XXX Hack?
```
```    #      exp_polar).
#u(exp(x)*sin(x), x)
assert _rewrite_single(exp(x)*sin(x), x) == \
([(-sqrt(2)/(2*sqrt(pi)), 0,
meijerg(((-S(1)/2, 0, S(1)/4, S(1)/2, S(3)/4), (1,)),
```