Did I find the right examples for you? yes no

All Samples(36)  |  Call(32)  |  Derive(0)  |  Import(4)

src/s/y/sympy-0.7.5/sympy/integrals/integrals.py   sympy(Download)
from sympy.integrals.rationaltools import ratint
from sympy.integrals.heurisch import heurisch, heurisch_wrapper
from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite
from sympy.utilities import xthreaded, flatten
from sympy.utilities.misc import filldedent
                    x, a, b = xab
                    try:
                        res = meijerint_definite(function, x, a, b)
                    except NotImplementedError:
                        from sympy.integrals.meijerint import _debug

src/s/y/sympy-HEAD/sympy/integrals/integrals.py   sympy(Download)
from sympy.integrals.rationaltools import ratint
from sympy.integrals.heurisch import heurisch, heurisch_wrapper
from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite
from sympy.utilities import xthreaded, flatten
from sympy.utilities.misc import filldedent
                    x, a, b = xab
                    try:
                        res = meijerint_definite(function, x, a, b)
                    except NotImplementedError:
                        from sympy.integrals.meijerint import _debug

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_meijerint.py   sympy(Download)
from sympy import (meijerg, I, S, integrate, Integral, oo, gamma,
                   hyperexpand, exp, simplify, sqrt, pi, erf, sin, cos,
                   exp_polar, polar_lift, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
         meijerint_indefinite, _inflate_g, _create_lookup_table,
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)
 
    # This tests various conditions and expansions:
    meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True)
    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi)*sigma*(erf(mu/(2*sigma)) + 1)
    assert c == True
 
    i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo)

src/s/y/sympy-HEAD/sympy/integrals/tests/test_meijerint.py   sympy(Download)
from sympy import (meijerg, I, S, integrate, Integral, oo, gamma,
                   hyperexpand, exp, simplify, sqrt, pi, erf, sin, cos,
                   exp_polar, polar_lift, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
         meijerint_indefinite, _inflate_g, _create_lookup_table,
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)
 
    # This tests various conditions and expansions:
    meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True)
    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi)*sigma*(erf(mu/(2*sigma)) + 1)
    assert c is True
 
    i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo)