Did I find the right examples for you? yes no

All Samples(12)  |  Call(8)  |  Derive(0)  |  Import(4)

src/s/y/sympy-0.7.5/sympy/integrals/transforms.py   sympy(Download)
def _inverse_laplace_transform(F, s, t_, plane, simplify=True):
    """ The backend function for inverse Laplace transforms. """
    from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise
    from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp
    # There are two strategies we can try:
        f = None
    if f is None:
        f = meijerint_inversion(F, s, t)
        if f is None:
            raise IntegralTransformError('Inverse Laplace', f, '')

src/s/y/sympy-HEAD/sympy/integrals/transforms.py   sympy(Download)
def _inverse_laplace_transform(F, s, t_, plane, simplify=True):
    """ The backend function for inverse Laplace transforms. """
    from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise
    from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp
    # There are two strategies we can try:
        f = None
    if f is None:
        f = meijerint_inversion(F, s, t)
        if f is None:
            raise IntegralTransformError('Inverse Laplace', f, '')

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_meijerint.py   sympy(Download)
from sympy import (meijerg, I, S, integrate, Integral, oo, gamma,
                   hyperexpand, exp, simplify, sqrt, pi, erf, sin, cos,
                   exp_polar, polar_lift, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
         meijerint_indefinite, _inflate_g, _create_lookup_table,
    def inv(f):
        return piecewise_fold(meijerint_inversion(f, s, t))
    assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
    assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
    assert inv(exp(-s)/s) == Heaviside(t - 1)
    assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)
 
    # Test some antcedents checking.
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert inv(exp(s**2)) is None
    assert meijerint_inversion(exp(-s**2), s, t) is None
 
 

src/s/y/sympy-HEAD/sympy/integrals/tests/test_meijerint.py   sympy(Download)
from sympy import (meijerg, I, S, integrate, Integral, oo, gamma,
                   hyperexpand, exp, simplify, sqrt, pi, erf, sin, cos,
                   exp_polar, polar_lift, polygamma, hyper, log, expand_func)
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1,
         meijerint_indefinite, _inflate_g, _create_lookup_table,
    def inv(f):
        return piecewise_fold(meijerint_inversion(f, s, t))
    assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
    assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
    assert inv(exp(-s)/s) == Heaviside(t - 1)
    assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)
 
    # Test some antcedents checking.
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert inv(exp(s**2)) is None
    assert meijerint_inversion(exp(-s**2), s, t) is None