Did I find the right examples for you? yes no

All Samples(12)  |  Call(8)  |  Derive(0)  |  Import(4)

NotImplementedError.
"""

new_extension = False

arga, argd = frac_in(arg, self.t)

if A is not None:

NotImplementedError.
"""

new_extension = False

arga, argd = frac_in(arg, self.t)

if A is not None:

"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
DE = DifferentialExtension(extension={'D': [Poly(1, x)], 'E_K': [], 'L_K': [],
'E_args': [], 'L_args': []})
assert is_log_deriv_k_t_radical(Poly(2*x, x), Poly(1, x), DE) is None

DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*t1, t1), Poly(1/x, t2)],
'L_K': [2], 'E_K': [1], 'L_args': [x], 'E_args': [2*x]})
assert is_log_deriv_k_t_radical(Poly(x + t2/2, t2), Poly(1, t2), DE) == \
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(1/x, t)],
'L_K': [2], 'E_K': [1], 'L_args': [x], 'E_args': [x]})
assert is_log_deriv_k_t_radical(Poly(x + t/2 + 3, t), Poly(1, t), DE) == \
([(t0, 2), (x, 1)], x*t0**2, 2, 3)

"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
DE = DifferentialExtension(extension={'D': [Poly(1, x)], 'E_K': [], 'L_K': [],
'E_args': [], 'L_args': []})
assert is_log_deriv_k_t_radical(Poly(2*x, x), Poly(1, x), DE) is None

DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*t1, t1), Poly(1/x, t2)],
'L_K': [2], 'E_K': [1], 'L_args': [x], 'E_args': [2*x]})
assert is_log_deriv_k_t_radical(Poly(x + t2/2, t2), Poly(1, t2), DE) == \
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(1/x, t)],
'L_K': [2], 'E_K': [1], 'L_args': [x], 'E_args': [x]})
assert is_log_deriv_k_t_radical(Poly(x + t/2 + 3, t), Poly(1, t), DE) == \
([(t0, 2), (x, 1)], x*t0**2, 2, 3)