Did I find the right examples for you? yes no

All Samples(20)  |  Call(14)  |  Derive(0)  |  Import(6)

src/s/y/sympy-0.7.5/sympy/integrals/rde.py   sympy(Download)
    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests
                    # if beta == m*Dt + Dw for w in k and m in ZZ:
                        # n = max(n, m)
                A = is_log_deriv_k_t_radical_in_field(alphaa, alphad, DE)
                if A is not None:
                    aa, z = A
    this equation with deg(q) <= n.
    """
    from sympy.integrals.prde import is_log_deriv_k_t_radical_in_field
 
    with DecrementLevel(DE):
        ba, bd = frac_in(b, DE.t)
        A = is_log_deriv_k_t_radical_in_field(ba, bd, DE)

src/s/y/sympy-HEAD/sympy/integrals/rde.py   sympy(Download)
    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests
                    # if beta == m*Dt + Dw for w in k and m in ZZ:
                        # n = max(n, m)
                A = is_log_deriv_k_t_radical_in_field(alphaa, alphad, DE)
                if A is not None:
                    aa, z = A
    this equation with deg(q) <= n.
    """
    from sympy.integrals.prde import is_log_deriv_k_t_radical_in_field
 
    with DecrementLevel(DE):
        ba, bd = frac_in(b, DE.t)
        A = is_log_deriv_k_t_radical_in_field(ba, bd, DE)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_prde.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
    prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
def test_is_log_deriv_k_t_radical_in_field():
    # NOTE: any potential constant factor in the second element of the result
    # doesn't matter, because it cancels in Da/a.
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
    assert is_log_deriv_k_t_radical_in_field(Poly(5*t + 1, t), Poly(2*t*x, t), DE) == \
        (2, t*x**5)
    assert is_log_deriv_k_t_radical_in_field(Poly(2 + 3*t, t), Poly(5*x*t, t), DE) == \
 
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t/x**2, t)]})
    assert is_log_deriv_k_t_radical_in_field(Poly(-(1 + 2*t), t),
    Poly(2*x**2 + 2*x**2*t, t), DE) == \
        (2, t + t**2)
    assert is_log_deriv_k_t_radical_in_field(Poly(-1, t), Poly(x**2, t), DE) == \

src/s/y/sympy-HEAD/sympy/integrals/tests/test_prde.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
    prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
def test_is_log_deriv_k_t_radical_in_field():
    # NOTE: any potential constant factor in the second element of the result
    # doesn't matter, because it cancels in Da/a.
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
    assert is_log_deriv_k_t_radical_in_field(Poly(5*t + 1, t), Poly(2*t*x, t), DE) == \
        (2, t*x**5)
    assert is_log_deriv_k_t_radical_in_field(Poly(2 + 3*t, t), Poly(5*x*t, t), DE) == \
 
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t/x**2, t)]})
    assert is_log_deriv_k_t_radical_in_field(Poly(-(1 + 2*t), t),
    Poly(2*x**2 + 2*x**2*t, t), DE) == \
        (2, t + t**2)
    assert is_log_deriv_k_t_radical_in_field(Poly(-1, t), Poly(x**2, t), DE) == \